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In this contribution quantum/classical surface hopping methodology is applied to vibrational energy relaxation
of a quantum oscillator in a classical heat bath. The model of a linearly damped (harmonic) oscillator is
chosen which can be mapped onto the Brownian motion (Caldeira-Leggett) Hamiltonian. In the simulations
Tully’s fewest switches surface hopping scheme is adopted with inclusion of dephasing in the adiabatic basis
using a simple decoherence algorithm. The results are compared to the predictions of a Redfield-type quantum
master equation modeling using the classical heat bath force correlation function as input. Thereby a link is
established between both types of quantum/classical approaches. Viewed from the latter perspective, surface
hopping with dephasing may be interpreted as “on-the-fly” stochastic realization of a quantum/classical Pauli
master equation.

1. Introduction

Because of the complexity of systems in condensed phase
chemical and biological physics, a fully quantum dynamical
description of processes is out of reach for these systems. While
classical molecular dynamics of nuclear motion provides a
versatile tool for investigation of large chemical and bio-
molecular systems,1,2 many interesting situations require the
inclusion of genuine quantum degrees of freedom,2-4 most
notably in photochemistry and photobiology,5,6 or make the
inclusion of quantum effects desirable for certain nuclear degrees
of freedom (DoF), e.g., for proton-transfer reactions.7,8 In this
scenario a “divide and conquer” strategy seems to be the most
fruitful avenue, where a usually small subsystem of interest is
described quantum mechanically, while the majority of sup-
posedly less important DoF, the environment or “heat bath”, is
treated by classical mechanics. The emerging methodology of
mixed quantum/classical dynamics (QCMD) has been success-
fully applied to electronically nonadiabatic processes,9-13 proton7

and light atom (transfer) reactions,8,14 and its origins date back
to the early days of quantum dynamics.15 Recently, the
methodology has also been developed to study vibrational
energy transfer in solution.16-18

Despite the progress being made, the field still reflects the
influence of rather fundamental questions and issues. There is
as yet no universally accepted quantum/classical method ap-
plicable to arbitrary systems or processes of interest. This is
perhaps best illustrated by the multitude of different schemes
adopted in the literature. While more traditional approaches
propagate a time-dependent Schro¨dinger equation for the
quantum subsystem self-consistently coupled to the classical
dynamics of the environment,4,9,19,20more recent developments
employ the density operator within a quantum/classical Liouville
equation framework.21-25

At the heart of the quantum/classical dilemma is the notion
of quantum open system dynamics and the emergent phenom-
enon of quantum decoherence,26-28 i.e., the decay of coherences
of the subsystem density matrix in a certain state basis depending

on the system-environment interaction.26,27 Quantum decoher-
ence in a subsystem originates from genuine quantum system-
bath correlations and is thus a priori absent from ad hoc
quantum/classical treatments. Decoherence effects have been
introduced by a number of researchers25,29,30-32 (see also the
references in ref 4), to provide a remedy to the problem of
unphysical coherence in the simplest quantum/classical methods.
The latter can be divided into two main categories, represented
by the mean field Ehrenfest (mfE)4,14 and trajectory surface
hopping (SH, TSH) methods,4,9 respectively. In both schemes
the Schro¨dinger (or quantum Liouville) dynamics of the
quantum subsystem is propagated fully coherently under the
influence of a single classical trajectory of the environment,
appropriately sampled from a classical or quasi-classical initial
distribution (independent trajectory approximation). The back-
reaction on the classical dynamics, however, is treated differ-
ently. In the mfE method, the classical trajectory evolves on a
mean field potential energy surface derived from the time-
dependent expectation value of the system-bath interaction. In
the SH method, the trajectory always evolves on one of the
various instantaneous adiabatic surfaces (the “occupied” state),
except for hops between surfaces accompanied by sudden
momentum adjustments along the nonadiabatic coupling vector,
accounting for quantum/classical energy conservation. The
probability of hopping events is evaluated from the nonadiabatic
coupling and the coherences in the adiabatic basis, and a fewest
switches Monte Carlo hopping scheme is employed to maintain
maximal consistency of the ensemble averaged subsystem
density matrix populations and “occupied” state statistics.

While mfE is a fully coherent QCMD method, it suffers from
the mean field backreaction which fails to reproduce the
expected asymptotic statistical mixture of states for the quantum
subsystem.25,33,34 This is precisely the quantum/classical cor-
relation problem which Tully’s fewest switches TSH (TFS-
TSH)4,35 suggests to remedy by introducing hopping events
between “occupied” adiabatic states, supposed to give the correct
branching ratios implied by an asymptotic statistical mixture.
Often, however, a discrepancy between (or inconsistency of)
ensemble averaged density matrix and “occupied” state popula-
tions is observed. This is commonly (or most oftenly) associated
with “frustrated hops”14,25 or “classically forbidden transi-
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tions”,4,11 where the nonadiabatic coupling and adiabatic co-
herences suggest hopping to an excited state, while there is not
enough kinetic energy available in the classical subsystem, so
the hop must be rejected. There appears to be no rigorous way
to handle this problem within a quantum/classical frame-
work, and different interpretations and strategies have been
proposed,4,11,36-9 also in connection with mean field Ehren-
fest14,20,40and the decoherence issue.25,32,39We suggest that the
problem of “frustrated hopping” is connected, in part, to the
absence of decoherence/dephasing from TSH: The quantum
subystem state vector (or density operator) is propagated
coherently throughout, even though hops between adiabatic
surfaces occur. Thus, during single trajectory SH evolution, the
currently “occupied” adiabatic state may acquire an associated
density matrix population significantly smaller than unity and
large coherences with other states (especially states of higher
energy), as will be demonstrated. As a result, transition
probabilities may become large, while a large fraction of
suggested hops must be rejected due to energy conservation
restrictions. It seems hard to believe that this inconsistency is
simply removed by ensemble averaging, given the assumed
validity of the independent trajectory approximation. However,
as will be illustrated below, the statistics of “frustrated hopping”
is also connected to quantum detailed balance,41 i.e., the
statistical ratio of up and down transitions between energy states.
Thus, it seems natural to expect that even in the most consistent
TSH scheme some fraction of “frustrated hops” must remain,
so there is some truth in the phenomenon of rejected hopping.

The suggested detailed balance related “frustrated hopping”
brings us to our final introductory point, the question of
asymptotic thermal equilibrium for the quantum subsystem
immersed in a classical heat bath. In a recent study, it has been
demonstrated that mean field Ehrenfest QCMD, applied to a
quantum oscillator interacting with a classical heat bath,33,34

gives (when it works reasonably) at best a quasi-classical
asymptotic thermal equilibrium. This can be rationalized in terms
of a classical dynamical correlation between quantum and
classical subsystems. The same type of asymptotic analysis is
also of interest for SH, and one of our aims in the present work.
While it is expected that TSH entails a quantum statistical
equilibrium for the subsystem of interest,41 we will also be
concerned with the rate of approach to equilibrium. Moreover,
we will see that the maintenance of quantum detailed balance
in surface hopping simulations may depend on whether a
mechanism of dephasing (or decoherence in the energy basis)
is invoked.

Given our above criticism, we take a rather modest attitude
and apply fewest switches SH to a deceptively simple model
system, which nevertheless poses a considerable challenge to
surface hopping,42 a harmonic oscillator bilinearly coupled to a
heat bath of harmonic oscillators. To achieve consistency of
density matrix and “occupied” state populations already at the
single-trajectory level, we introduce a simple decoherence
algorithm which basically consists of associating with each
successful hopping event a “collapse” of the vibrational wave
packet onto the new “occupied” adiabatic state. In view of our
later discussion, this is, however, not to be understood in terms
of a measurement-like interaction between the quantum sub-
system and its environment. Implicitly we assume that the
vibrationally nonadiabatic coupling is in the perturbative regime,
such that the adiabatic coherences should remain small and the
adiabatic populations vary slowly.

At this point, we add some remarks on the notions of
decoherence and dephasing, to avoid confusion. As has already
become apparent, we use the latter two terms interchangeably.
While the term dephasing seems to most oftenly be associated
with the loss of phase coherence between energy states (most
notably in spectroscopy), leading for instance to decay of the
displacement and momentum expectation values of a damped
oscillator, the term decoherence, in its more general form,
applies to the decay of coherences from a subsystem density
matrix, in whatever basis. Sometimes the notion of dephasing
is also used in this manner. Since we are referring, mainly, to
decoherence in the (adiabatic) energy basis, it may be understood
as equivalent to dephasing in the above sense. Later, we will
need to distinguish between different origins of dephasing,
including pure dephasing (due to some type of random frequency
modulation), dephasing due to energy/population relaxation
(damping of oscillations), and genuine quantum decoherence
arising from quantum system-bath entanglement.26,27Thereby,
we deliberately subsume the distinct phenomenon of quantum
decoherence under the more general heading of “decoherence/
dephasing” (“loss of phase coherence”), although this may not
seem acceptable to all readers, and the term decoherence, in its
more narrow sense, is even understood as quantum decoher-
ence.26,27A detailed discussion of decoherence/dephasing mech-
anisms in quantum/classical dynamics simulations will be given
in the Results.

Our paper is organized as follows. In section 2, fewest
switches adiabatic surface hopping is briefly reviewed. The
Brownian motion model, used in the simulations, is introduced,
and the second order Redfield master equation applied to this
model. In particular, the secular limit of the Redfield master
equation and its quantum/classical implementation form the basis
for the analysis of trajectory surface hopping simulations
presented in section 3, where Tully’s original TFS-SH method
and our modified “hopping with complete dephasing” version
are compared. This section also examines different origins of
dephasing as to their relevance for the model situation consid-
ered. Section 4 concludes.

2. Theory

2.1. Fewest Switches Adiabatic Surface Hopping.For
completeness, we give here a short review of Tully’s fewest
switches SH (TFS-SH).4,9,35 For a total Hamiltonian of the
general type

whereQ ≡ {Qi} andP ≡ {Pi}, or collectivelyX ≡ (Q, P), the
TSH quantum/classical equations of motion take the form

Ĥ ) ĤS(q, p) + V̂(q, Q) + ĤB(Q, P)

ĤS(q, p) ) p̂2

2µ
+ V̂S(q)

ĤB(Q, P) ) ∑
i

P̂i
2

2mi

+ V̂B(Q) (1)

d
dt

|ΨS(t)〉 ) - i
p

{ĤS + V̂[q; Q(t)]}|ΨS(t)〉 ≡

- i
p
Ĥq[q; Q(t)]|ΨS(t)〉

Q4 (t) )
∂HB(X)

∂P
|X)X(t)

P4 (t) ) -
∂HB(X)

∂Q
|X)X(t) -

∂εm[Q]

∂Q
|Q)Q(t) (2)
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where ĤS and ĤB denote the system and bath Hamiltonian,
respectively, andεm[Q(t)] is the energy eigenvalue associated
with the currently occupied instantaneous adiabatic state,
Ĥq[q; Q(t)] |øm[Q(t)]〉 ) εm[Q(t)] |øm[Q(t)]〉. Thus, the quantum
subsystem evolves coherently, while the classical trajectory of
the environmental degrees of freedom (DoF) is confined to a
single adiabatic potential energy surface. The time-dependent
Schrödinger eq 2 can be integrated using any suitable bases
and unitary propagation scheme. In the simulations presented a
modified PICKAPACK algorithm43-45 was used. When the
quantum state vector is projected onto the adiabatic basis,
am[Q(t);t] ) 〈øm[Q(t)]|ΨS(t)〉, the amplitude equations of motion
read

where dmn[Q(t)] is the nonadiabatic coupling vector with
components4

Thus, the rate of change of the currently occupied adiabatic
state population becomes

with Fmn[Q(t);t] ) am[Q(t);t]an
/[Q(t);t]. In the fewest switches

implementation35 the transition probabilitytmfn(t;δt) out of state
m into staten is evaluated to

with δt being the time increment used in the simulation (chosen
suitably small), and the associated hopping probability
pmfn(t;δt) (probability of escape into staten) is calculated as

In this way, fewest switches SH ensures that only escape events
from statem are sampled during coherent evolution of the
quantum subsystem. In every time step, a uniformly distributed
random numberê ∈[0, 1] is generated, where the condition

suggests a hop to the new adiabatic staten. In order for the hop
to occur, energy conservation must be fulfilled, while the

momentum is adjusted along the nonadiabatic coupling vector
dmn,11

wherePm andPn are the (mass-weighted) momentum vectors
before and after the hop, respectively, andemn the unit vector
alongdmn. Equation 9, together with energy conservationKn +
εn[Q(t)] ) Km + εm[Q(t)], yields a quadratic equation forσ
and thus

which poses the requirement (Pm‚emn)2 g 2∆εnm[Q(t)]; i.e., for
εn[Q(t)] > εm[Q(t)] enough kinetic energy alongdmn must be
available, otherwise hopping to a higher energy state must be
rejected. The latter case corresponds to the “frustrated hopping”
situation mentioned above. For a successful hop the( sign may
be chosen such as to minimize the momentum shift.

Before closing this subsection, we mention that TFS-TSH
may be mapped onto a Markovian Pauli master equation for
the adiabatic state populationspm(t)

where the transition rateswmfn can be identified with〈pmfn-
(t;δt)〉/δt, i.e., wmfn is the ensemble averaged rate of escape
from statem to staten, sampled during a coherent evolution of
the quantum subsystem density matrix while the classical
environmental trajectory is confined to the adiabatic surface of
statem. For reasons of consistency (possibly already on the
single-trajectory level), during coherent sampling of〈pmfn(t;δt)〉
the adiabatic populationFmm[Q(t);t] should remain close to unity
(or at least>0.5) and the adiabatic coherences small, such that
the nonadiabatic coupling may be considered as a perturba-
tion.

Even if this is initially the case, immediately after successful
hopping to a new staten the population typically lags behind,
the dominant population is stillFmm[Q(t);t]. For a consistent
sampling of〈pnfn′(t;δt)〉 the dominant population should now
be Fnn[Q(t);t]. This suggests resetting the state vector to
|øn[Q(t)]〉 during hopping, i.e., an apparent “collapse” of the
coherent wave packet onto adiabatic staten. This line of
reasoning is also consistent with a quantum master equation in
the secular limit,46 where the rate of (local) population relaxation
sets a lower bound to dephasing (see below). When fewest
switches TSH is interpreted and implemented in this way, it
may be viewed as an “on-the-fly” stochastic realization of a
Pauli master equation (eq 11), with the transition rates a priori
unknown. The sampling of rate coefficients (rates of escape)
wmfn by way of eq 7 starting from the respective pure adia-
batic statesm then corresponds to a flux-over-population
method.47

2.2. Model Hamiltonian and Dissipative Subsystem Dy-
namics.In the present study, we consider the simple system of
a harmonic oscillator linearly perturbed by the interactionVSB

) -qF with a heat bath, whereF is the force excerted on the
relevant subsystem by the many bath DoF. This situation may
be mapped onto the model of one-dimensional motion in a

d

dt
am[Q(t);t] ) -iωm[Q(t)] am[Q(t);t] -

∑
n*m

{dmn[Q(t)]‚Q4 (t)}an[Q(t);t] (3)

dmn
(i) [Q(t)] ) 〈øm[Q(t)]|∇i øn[Q(t)]〉

) -
〈øm[Q(t)]|∇i Ĥq[q; Q(t)]|øn[Q(t)]〉

εm[Q(t)] - εn[Q(t)]

) -{dnm
(i) [Q(t)]}*

dmm
(i) [Q(t)] ) 0 (4)

d

dt
Fmm[Q(t);t] ) -2∑

n*m

Re{dmn[Q(t)]‚Q4 (t) Fnm[Q(t);t]} (5)

tmfn(t;δt) ) - d
dt

Fmm[Q(t);t]|nδt

) +2 Re{dmn[Q(t)]‚Q4 (t) Fnm[Q(t);t]}δt (6)

pmfn(t;δt) ) max{0,
tmfn(t;δt)

Fmm[Q(t);t]} (7)

∑
k)1

n-1

pmfk < ê e ∑
k)1

n

pmfk(t;δt) (8)

Pn ) Pm + σ emn emn )
dmn

xdmn‚dmn

(9)

Pn ) Pm - (Pm‚emn)emn ( x(Pm‚emn)
2 - 2∆εnm[Q(t)] emn

(10)

d

dt
pm(t) ) -pm(t)∑

n*m

wmfn + ∑
n*m

pn(t) wnfm (11)
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potential VS(q), bilinearly coupled to a bath of harmonic
oscillators

known as the Brownian motion or Caldeira-Leggett
Hamiltonian.47-50 It provides, for instance, the basis for a
rigorous microscopic formulation of the generalized Langevin
equation (GLE)48,51,52

in classical and quantum dynamics, whereγ(t) is the friction
kernel andδF(t) a fluctuating force, with the statistical proper-
ties48,53

where in the quantum casenjl ) 〈âl
†âl〉 is the mean occupation

number of thelth bath oscillator at thermal equilibrium.
For small system-bath interactionV̂SB ) -q̂∑lgl Q̂l a second-

order generalized quantum master equation may be obtained,53

which in the limit of short bath correlation time (on the system’s
time scale) may be written in a Markovian (time local) Redfield-
type form,46,53,54

where the dissipatorsΛ̂ ) ∫0
∞ dt C(t) q̂S(-t) and Λ̂† ) ∫0

∞ dt
C*( t) q̂S(-t) contain the system Heisenberg operatorq̂(t)
propagated backward in time under the system HamiltonianĤS.
By invoking the secular limit46,53 the Redfield master equation
may be further simplified, where the populationsFnn(t) of system
energy eigenstates,ĤS|n〉 ) εn|n〉, are decoupled from the
coherencesFmn(t) and evolve according to a Pauli master
equation (eq 11) with transition rates

The detailed balance relationship betweenwmfn andwnfm is
embodied in the properties of the correlation spectrum53

giving Ĉ(-ω) ) eâpωĈ(+ω). For the damped harmonic oscil-
lator only single-quantum transitions are allowed

and the overall energy (occupation number) relaxation is
exponential with rate constantwj ) γ̂(ω0)/2, the half-sided cosine
transform of the friction kernel. For the Brownian motion model
(eqs 12 and 13) quantum and classical rates of energy relaxation
are equal,wj ) wj cl. The evolution of coherences in the secular
limit is characterized by relaxation-induced dephasing and a
(usually small) frequency shift

Thus, the rates for local population (energy) relaxation define
a maximum time scale for dephasing (decoherence in the energy
basis). The case of adiabatic coherences is analoguous. This is
one of our motivations for introducing the simple decoherence
algorithm into TFS-SH, as mentioned in the previous sub-
section. Although we deal here with situations of weak
dissipative system-bath coupling, the reasoning is more general
and also applies to weak vibronic interaction between potential
energy surfaces.

Before closing this subsection, we briefly discuss, for later
reference, one particular quantum/classical modeling approach
to vibrational energy relaxation within the framework of
Redfield theory. It exploits the fact that equilibrium quantum
time correlation functions have the property53 C*( t) ) C(-t),
and therefore can always be written as a sum of time-symmetric
and -antisymmetric contributions,C(t) ) C+(t) + C-(t) and
C*( t) ) C+(t) - C-(t). The Fourier transforms of symmetric
and antisymmetric parts are related toĈ(ω) via

For general condensed phase situations, the quantum force
correlation function is unknown, which suggests making use
of its classical counterpart via the correspondenceC+(t) T
Ccl(t), i.e., invoking the high-temperature limit forC+(t).33,55,56

The transition rates (eq 16) then read

and for the damped harmonic oscillator

Ĥ )
p̂2

2µ
+ V̂S(q) + ∑

l {P̂l
2

2
+

ωl
2

2 (Q̂l -
gl

ωl
2

q̂)2} (12)

d
dt

p(t) ) -
dVS(q)

dq
- ∫0

t
ds γ(t - s) p(s) + δF(t) (13)

〈δF(t)〉 ) 0

C(t) ≡ 〈δF̂(t)δF̂(0)〉 ) ∑
l

pgl
2

2ωl

{(njl + 1) e-iωlt + njl e+iωlt}

Ccl(t) ≡ 〈δF(t)δF(0)〉 ) kBT∑
l

gl
2

ωl
2
cosωlt ≡ µkBTγ(t) (14)

d
dt

F̂S(t) ) - i
p
[ĤS, F̂S(t)] - 1

p2
{[q̂, Λ̂ F̂S(t)] - [q̂, F̂S(t) Λ̂†]}

(15)

wmfn )
|qmn|2

p2 ∫-∞

+∞
dt C(t) e-iωnmt (16)

Ĉ(+ω) ) ∫-∞

+∞
dt C(t) e-iωt ) µ pωnj(ω, T) γ̂(ω)

Ĉ(-ω) ) ∫-∞

+∞
dt C(t) e+iωt

) ∫-∞

+∞
dt C*( t) e-iωt ) µ pω{nj(ω, T) + 1}γ̂(ω)

(17)

wnfn+1 )
γ̂(ω0)

2
nj(ω0) (n + 1)

wnfn-1 )
γ̂(ω0)

2
{nj(ω0) + 1}n (18)

d
dt

Fmn(t) ) -i{ωmn + δωmn}Fmn(t) - 1
τmn

Fmn(t)

1

τmn

)
1

2
{∑

k*m

wmfk + ∑
k*n

wnfk} (19)

Ĉ+(ω) ) 1
2

{1 + eâpω}Ĉ(ω) Ĉ-(ω) ) 1
2

{1 - eâpω}Ĉ(ω)
(20)

wmfn )
|qmn|2

p2

2

1 + eâpωnm
Ĉcl(ωnm) (21)

wnfn+1 )
(n + 1)
2pω0

2kBTγ̂(ω0)

1 + eâpω0
≡

2kBT

pω0(2nj + 1)

γ̂(ω0)

2
nj(n + 1)

wnfn-1 ) n
2pω0

2kBTγ̂(ω0)

1 + e-âpω0
≡ 2kBT

pω0(2nj + 1)

γ̂(ω0)

2
(nj + 1)n

(22)
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The overall decay of energy (mean occupation number) is
therefore

where the prefactor (f (ω0,T) e 1), relating wj qc and wj cl )
γ̂(ω0)/2 throughwj qc ) f (ω0,T) wj cl, arises from employing the
correspondenceC+(t) = Ccl(t) in combination with quantum
detailed balance, eqs 17 and 20. As will be demonstrated below,
this is the result obtained from TFS-TSH simulations, with
inclusion of dephasing, based on the Brownian motion Hamil-
tonian.

3. Results and Discussion

3.1. Model Parameterization and Simulations.For the
Brownian motion Hamiltonian, eq 12, applied to the damped
harmonic oscillator (HO) the coherent TFS-SH equations of
motion, eq 2, read

In the simulations, an ohmic spectral density of bath oscilla-
tors53,57

with exponential cutoff has been assumed, where the force
correlation spectrum (ω g 0) is given by

For the system oscillator a harmonic frequency ofω0/2π ) 250
cm-1 has been chosen, and the bath spectral density adjusted
such thatγ̂(ω0)/2 = 0.2 ps-1 (γ ) 2.0 ps-1, ωc/2π ) 108.574
cm-1), and discretized using 2000 classical oscillators in the
range 0-10 ωc. The choice of a rather low-frequency system
oscillator helps avoiding small integration steps, while classical
and quantum equilibrium statistics are still distinguishable.

An ensemble of 1000 independent quantum/classical non-
equilibrium trajectories has been generated, starting from a mean
energy of〈n̂〉0 ) 5 vibrational quanta and a classical canonical
distribution of bath initial conditions atT ) 300 K, in the
presence of the quantum subsystem (see below). Each trajectory
was initialized with its own random seed with respect to the
selection of bath oscillator initial conditions and the surface
hopping algorithm, and run for up to 15 ps. For each random
initial state of the heat bath, only a single sequence of surface
hops was performed, instead of trying to converge both the
surface hopping statistics for every single bath initial condition
and the canonical sampling of the latter. We note that this may
be considered a severe deviation from the TFS-SH protocol,
where a bunch of different SH trajectories (with different random

seeds) should be generated from the same (random) classical
bath initial condition. Moreover, an exhaustive sampling of SH
statistics for each given classical initial condition would require
enough trajectories such that each possible SH branching
situationm f {n} at time t ∈ [t0, tmax] is visited more than
once. In practice, the difference between our present TFS-TSH
protocol and the general scheme may be assumed to vanish,
provided that the initial conditions of the classical bath force
are sampled sufficiently densely. Our experience with running
several SH trajectories per classical initial condition, while
keeping the (sufficiently large) total number of trajectories fixed
(reducing the number of classical initial conditions), seems to
suggest that this is the case. Thus, the above more simple TFS-
SH protocol in principle does not reduce the computational effort
(total number of trajectories at assumed convergence). For the
present model, at least, it rather appears as a matter of
algorithmic convenience. In general, of course, it is necessary
to keep an eye on these matters.

The initial wave function has been chosen to be an eigenstate
|n0〉 ) |5〉 of ĤS ) pω0n̂ (diabatic state), which differs very
little from the corresponding adiabatic state (Figure 1), and the
initial state of each bath oscillator is chosen from

i.e. mean field correlated34 instead of factorized quantum/
classical initial conditions. Thereby, problems arising from
factorized initial conditions52,58are avoided in general, although
for the present special case of a damped HO, with diabatic initial
state,〈q̂〉0 ) 0.

The heat capacityCV ) 2000kB of the classical bath ensures
that the rise of bath temperature is kept below 1 K. Also, by
choosing a suitably large heat bath, it is made sure that
recurrences of the friction kernelγ(t) (eqs 13 and 14) do not
show up within the time-window considered, and the dynamics
of the quantum subsystem appears as irreversible.

The coherent quantum/classical equations of motion (eqs 2
and 24) were solved numerically using a symplectic quantum/
classical symmetric split propagator as described elsewhere,34

using a combination ofĤS (Ĥsolv) eigenstate and position space
(sinc-DVR) representations. In the case of rejected hops, instead
of reversing the classical momenta along the nonadiabatic
coupling vector36 we have chosen to continue the coherent
quantum/classical propagation as if no hop had been sug-
gested.11,37,38

d
dt

〈n̂〉 ) -wj qc{〈n̂〉 - nj(ω0)} wj qc )
2kBT

pω0(2nj + 1)
wj cl

(23)

d

dt
|ΨS(t)〉 ) -

i

p
{Ĥsolv - q̂∑

l

glQl(t)}|ΨS(t)〉

Ĥsolv ) pω0{n̂ +
1

2} +
1

2
∑

l

gl
2

ωl
2

q̂2

Ṗl(t) ) Q̈l(t) ) -ωl
2 Ql(t) + gl qmm[Q(t)] (24)

J(ω) ≡ π

2
∑

l

gl
2

ωl

δ(ω - ωl) ) µγω e-ω/ωc (25)

Ĉ(ω) ) 2p J(ω) nj(ω, T) ≡ 2µγ pωnj(ω, T) e-ω/ωc
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Figure 1. Initial quantum state in position space (diabaticstate). The
corresponding adiabatic wave function is only slightly shifted in origin,
due to bath initial conditions.
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3.2. Simulation Results. 3.2.1. Energy Relaxation.In
Figures 2 and 3 the single-trajectory and ensemble-averaged
energy relaxation behavior is illustrated for both the original
TFS-SH scheme (no dephasing) and our modified version
including dephasing (decoherence in the adiabatic energy basis).
The performance of Tully’s original scheme for vibrational
energy relaxation, in particular its failure to reproduce an
asymptotic quantum statistical equilibrium for the subsystem
oscillator, motivates our introduction of decoherence.

For the sake of clarity and definiteness, we distinguish
between the expectation value〈n̂ad〉 ) 〈ΨS(t)|n̂ad|ΨS(t)〉 of the
number operatorn̂ad ) n̂ad[Q(t)] (in the adiabatic basis, see eq
31 below) and the associated eigenvaluem ) 〈m|n̂ad|m〉, where
|m〉 ) |øm[Q(t)]〉 is an instantaneous adiabatic vibrational state
of the linearly perturbed quantum harmonic oscillator (specif-
ically, the occupied state), and the adiabatic state indexm
corresponds to the vibrationally adiabatic quantum number, i.e.,
the number of energy quanta (occupation number) of the
adiabatically displaced harmonic oscillator (see eq 31 below).

For Tully’s original TFS-SH scheme, in Figure 2a the
evolution of the assigned occupied adiabatic statem) 〈m|n̂ad|m〉
along a single TSH trajectory is shown and compared to the
mean occupation number〈n̂ad〉 in the adiabatic basis (the shifted
HO basis), as calculated from the quantum amplitudes. As is
clearly visible, due to fully coherent propagation of quantum

amplitudes the classical heat bath tends to drive the quantum
subsystem to a higher mean energy (〈n̂ad〉), a behavior which is
similar to mean field Ehrenfest dynamics starting from an
(excited) energy eigenstate.33,34In particular, the mean occupa-

Figure 2. Single trajectory time evolution of the occupied adiabatic
state m(t) (adiabatic occupation number) and the mean adiabatic
occupation number〈n̂ad〉t, for (a) Tully’s original and (b) our modified
TFS-TSH.

Figure 3. Ensemble averaged time evolution of mean occupied state
and mean occupation number: (a) for the original TFS-SH, compared
to the quasi-classical PME and quantum PME predictions; (b) for our
modified TFS-SH, compared to the quantum/classical PME and
quantum PME predictions. (c) Ensemble averaged time evolution of
mean occupied state and standard deviation, for our modified TFS-
SH, compared to the quantum/classical PME prediction. Numerical data
points with error bars serve to indicate the respective overall statistical
uncertainties (<10%).
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tion number〈n̂ad〉 never falls below its value at time zero. This
is a general result, which is due to the quantum number
dependence of the nonadiabatic coupling vector, wheredm,m+1

∝ xm+1 anddm,m-1 ∝ xm in the present case (see the section
below on a statistical treatment). In contrast, the occupied state
index m seems to evolve toward states of lower energy, as
expected for a subsystem coupled to a thermal reservoir. As a
result,〈n̂ad〉 g m for all times. The large discrepancy between
m and 〈n̂ad〉 g m implies that, except att ) 0, the occupied
statem issfor almost all timessnot the dominant state in the
expansion of the quantum state vector|ΨS(t)〉. It also implies
that the quantum coherencesFmn(t) ) am(t)an

/(t) involving the
currently occupied adiabatic statem are particularly large for
higher excited statesn > m and thus favor transitions to these
energy levels, provided enough energy is available in the
classical subsystem. Transitions to lower levelsn < m are
possible only to the extent that the respective states are contained
in the expansion of|ΨS(t)〉.

Upon ensemble averaging the energy relaxation behavior as
shown in Figure 3a is obtained. Again,〈n̂ad〉 g 〈m〉 as in the
single-trajectory case. While the mean occupied adiabatic state
〈m〉 smoothly relaxes toward lower energiespω0〈m〉 (in fact
exponentially to a good approximation), the mean occupation
number〈n̂ad〉 evolves toward higher energiespω0〈n̂ad〉t > pω0-
〈n̂ad〉0. The latter behavior again very closely resembles the
results obtained with the mean field Ehrenfest scheme, when
starting from an excited energy eigenstate,34 wherepω0〈n̂〉t f
pω0〈n̂〉0 + kBT is obtained. A detailed analysis is skipped here,
because the evolution of〈n̂ad〉 is not of physical relevance (at
least not explicitly). In Figure 3a is also shown the decay of
mean occupation number as predicted by a quantum Pauli master
equation (Pauli ME, PME) with average rate of relaxationwj )
wj qu ) wj cl ) γ̂(ω0)/2 (cf. eq 18). Obviously, the latter decay
curve falls systematically below the numerical data for the mean
occupied state〈m〉t. The same is also true for the decay curve
predicted by a quantum/classical PME (eq 23) withwj ) wj qc <
wj cl. Interestingly, the best agreement with the numerical data
for 〈m〉t is observed, when a quasi-classical PME is used, where
wj ) wj cl ) 0.2 ps-1 (see the model parametrization in section
3.1) and the mean thermal occupation number set equal to its
value in the classical limit,nj(ω0) ) njcl(ω0) ) (âpω0)-1. To aid
the reader in judging the statistical significance of this result, a
numerical data point is included with an error bar indicating
the overall statistical uncertainty (<10%).

The results reported and analyzed sofar for the original TFS-
SH scheme indicate, that fewest switches surface hopping
applied to the case of a damped oscillator apparently fails to
reproduce a quantum statistical asymptotic thermal equilibrium
for the quantum subsystem, in contrast to the recent suggestion
by Parandekar and Tully41 based on the analysis of a two-level
quantum subsystem. Detailed arguments relating our findings
to those of Parandekar and Tully will be given later, when
discussing our numerical evidence on the issue of quantum
thermal equilibrium. While it would be inappropriate to claim
that our results obtained for the damped oscillator case represent
a generic property of the TFS-SH method, the prediction of a
quantum statistical thermal equilibrium can in our view be
definitely ruled out for the model situation considered here.
Although the length of our current simulations is not sufficient
to arrive at a completely thermalized state of the quantum
subsystem, it would appear strange to expect the numerical
decay curve for〈m〉t deviating strongly from the prediction of
the quasi-classical Pauli ME at later times, when it so accurately
followed it up to three times the parametrized energy relaxation

time (τcl ) wj cl
-1 ) 5 ps). The only way of arriving at an

asymptotic quantum statistical thermal equilibrium would require
the assumption of a nonexponential decay of the average energy
(occupation number), including relaxation time(s) much larger
thanτcl, a rather unphysical assumption for a linearly damped
harmonic oscillator.

Qualitatively, the energy relaxation behavior of the damped
oscillator, subject to Tully’s TFS-SH scheme, may be rational-
ized as follows: The quantum amplitudes, and thus the adiabatic
populations and coherences, along a single quantum/classical
trajectory evolve fully coherently from the quantum initial state,
and the influence of the classical environmental forces tends to
drive the quantum “reference” state|ΨS(t)〉 to a higher mean
energypω0〈n̂ad〉t (cf. Figures 2a and 3a). As discussed above,
this implies that the “reference” state, i.e., the adiabatic
populations and coherences, from which the transition prob-
abilities are determined according to eqs 6 and 7, unduely favors
transitions to higher adiabatic energy levels, even though the
quantum/classical energy conservation (eq 10) provides an
overall “thermodynamic cutoff” for the latter type of transitions,
such that transitions to lower energy states win on average. The
question, why this should specifically lead to a quasi-classical
thermal equilibrium for〈m〉, must be left open at this point.
However, the ensemble averaged energy relaxation toward
pω0njcl ) kBT > pω0nj(ω0, T) with the decay timeτcl is
qualitatively consistent with the above arguments.

Obviously, something is going wrong with Tully’s original
fewest switches scheme when applied to the simple problem of
a damped quantum oscillator in a classical heat bath. The
ensemble averaged mean energypω0〈m〉t above the zero point
level tends to come out too large, as compared to the expected
relaxation toward a quantum statistical equilibrium, and the
origins of this behavior can be identified already at the single-
trajectory level. As implicitly evident from Figures 2a and 3a,
a large discrepancy is observed between the adiabatic energy
level populations obtained from the quantum amplitudes and
the ones obtained from the occupied state assignment. Yet the
adiabatic level populations and coherences derived from the
coherently evolving quantum amplitudes are used to obtain the
hopping probabilities for the stochastic evolution of the occupied
adiabatic statem(t).

While it is true that the evolution of coherences and
populations should reflect non-Markovian effects to some extent,
which the TFS-SH coherences undoubtedly do, it is also true
that the dissipative subsystem should approach a Markovian
limit at longer times. In the absence of so-called “pure
dephasing”, according to Redfield theory (eqs 15, 16, and 19),
the phase coherence between energy states on average vanishes
on the time scale of local population relaxation. On the single-
trajectory level dephasing may either be introduced as a
continuous process25 (using the density matrix) or as a discon-
tinuous, stochastic process (as adopted here). The simplest way
of implementing the above connection between dephasing and
local population relaxation on the single-trajectory level is to
discard the adiabatic coherences after each successful hop, by
resetting the state vector to the new assigned adiabatic state.
The resultant “collapse” of the coherently evolving quantum
state vector onto the new occupied state seems to imply an
effective measurement-like interaction between the quantum
subsystem and its (classical) surroundings (i.e., quantum deco-
herence). Objections against this view may, from a more
microscopic perspective, be answered as follows: The original
TFS-TSH method includes non-Markovian effects in the
evolution of the quantum subsystem due to the fact that the
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quantum state vector is propagated coherently throughout along
each single quantum/classical trajectory. However, after some
time interval (defined essentially by the correlation time of the
classical forceF(t), τc ∼ 100fs in the present case) the evolution
of the quantum distribution{pm(t)} should become independent
of its history. This, in turn, implies that the transition rateswmfn

only depend onmandn (and the spectral density of bath forces).
In order for this to be true, the ensemble averaged rates in the
Markovian limit have to be expressed aswmfn ) 〈pmfn(t;δt)〉m/
δt, where the subscriptm now denotes not only constraining
the classical dynamics to them th adiabatic potential energy
surface. It also means that the single-trajectory adiabatic
populations and coherences, determining the hopping prob-
abilities of eq 7 and thereby the average hopping rates,
effectively evolve from a situation whereFmm(thop) )
am(thop)am

/ (thop) ≈ 1, i.e., the rate of escape from statem to state
n in the Markovian limit is the same as ifm was the initially
prepared adiabatic statem0. This approach to the Markovian
limit should be reflected somehow in the single-trajectory
implementation of TFS-SH, be it smooth in time or sudden.
On a sufficiently coarse-grained time scale, the smooth transition
to the Markovian limit may be replaced by a sudden jump to
the respective new adiabatic state on the single-trajectory level;
i.e., we arrive at the “collapse” or “hopping with complete
dephasing” implementation of TFS-TSH as suggested above,
which is, however, physically distinct from quantum decoher-
ence (see our later discussion). What follows is an investigation
of this modified TFS-SH scheme.

In Figure 2b, for our TFS-TSH with dephasing, the evolution
of the assigned occupied adiabatic statem ) 〈m|n̂ad|m〉 along a
single TSH trajectory is shown and compared to the mean
adiabatic occupation number〈n̂ad〉 ) 〈ΨS(t)|n̂ad|ΨS(t)〉. As is
clearly visible, during coherent evolution between quantum
transitions the classical heat bath tends to drive the quantum
subsystem to a higher mean energy (〈n̂ad〉), again a behavior
which is similar to mean field Ehrenfest dynamics starting from
an (excited) energy eigenstate.33,34The discrepancy betweenm
and〈n̂ad〉 becomes particularly pronounced whenm ) 0, where
only the thermally activated channel 0f1 is possible, and
enough kinetic energy must be available along the nonadiabatic
coupling vectord01, in order for the hop to occur. The coherent
time interval (waiting time) inm) 0 is therefore comparatively
long. Although〈n̂ad〉 g m, the evolution of〈n̂ad〉 closely follows
the assigned adiabatic state indexm (the “occupied” state), due
to our procedure of resetting the wave packet to the new
adiabatic state (and the adiabatic coherences to zero) im-
mediately after a transitionmfn, such that the coherent cycle
then starts again with〈n̂ad〉 ) n and pn ) 1. However, by
introducing dephasing in the adiabatic basis, as implemented
here, coherence effects are not maintained across transitions
between adiabatic states. Rather, it is ensured that the transition
rates wmfn originating from statem are always the same,
independent of the initialization (m0) and the history of the
evolving ensemble{pm(t)}.

Figure 3b, for our modified TFS-SH scheme, shows the
ensemble averaged data for〈m〉 and 〈n̂ad〉. Again, 〈n̂ad〉 g 〈m〉
as in the single-trajectory case. The deviation becomes particu-
larly large at low energies close to thermal equilibrium, for
reasons that have been discussed above. Also shown is the decay
of mean occupation number as predicted by a quantum/classical
PME, eqs 21-23, with wj ) wj qc e wj cl. In the present case,
wj cl ) 0.2 ps-1 andwj qc = 0.895× 0.2 ps-1. The agreement of
the Q/C PME with 〈m〉 already demonstrates, that fewest
switches TSH (including dephasing) applied to a harmonic

oscillator with linear dissipation (i) gives a quantum statistical
asymptotic thermal equilibrium for the quantum subsystem, and
(ii) is equivalent to a (particular) quantum/classical PME
treatment as traditionally employed in the field of vibrational
energy relaxation.55,56It also underscores, that quantum statistical
dynamical information should always be derived from the
statistics of assigned adiabatic statesm.11 Comparison of
numerical results to the quantum PME prediction (wj ) wj qu )
wj cl), on the other hand, shows that the latter decay curve falls
systematically below the numerical one. Again, a numerical data
point is included with an error bar indicating the overall
statistical uncertainty (<10%) and pointing out the statistical
significance of our findings.

Figure 3c contains, in addition to the first moment〈m〉, also

the standard deviationσm ) x〈m2〉-〈m〉2. Again, the agree-
ment with the quantum/classical PME is satisfactory.

Besides the analysis given sofar, we observe that the
relaxation of〈n̂ad〉 very accurately follows the exponential decay
law of eq 23 with wj ) wj cl and nj ) njcl ) (âpω0)-1, i.e.,
relaxation toward a quasi-classical thermal equilibrium, the same
type of relaxation behavior exhibited by the mean occupied state
〈m〉 for Tully’s original TFS-TSH (Figure 3a). This is not
shown here but reserved for further consideration.

In the following, we refer to our modified version of Tully’s
fewest switches method, except when indicated otherwise.

3.2.2. Population Relaxation.A more detailed view is
provided by the population dynamics (Figure 4) as derived from
the statistics of assigned adiabatic states (“binned” populations).
Along a single TFS-TSH trajectory, probabilities are assigned
aspm(t) ) 1 (occupied state) andpn(t) ) 0 (n * m), respectively.
Figure 4 contains the ensemble averaged data form ) 5, 3,
and 1 as compared to the quantum/classical PME prediction.
Especially the decay of higher excited states (m ) 5 and 3) is
very well reproduced, while for the first excited state, which is
significantly populated at thermal equilibrium, it is more difficult
to average out thermal fluctuations. Thus, we have strong
arguments for the equivalence between both types of quantum/
classical approaches, at least within the limits of numerical
accuracy and finite ensemble size. This equivalence is, in our
view, by no means a priori self-evident and will be addressed
below by statistical theory based on the TFS-SH scheme.

Furthermore, the approach to quantum statistical equilibrium
of the quantum subsystem is numerically demonstrated by

Figure 4. Ensemble averaged time evolution of adiabatic energy level
populations for quantum numbersm ) 5 (initially occupied), 3, and 1,
compared to the quantum/classical PME prediction (modified TFS-
SH).
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exploiting the property that the populations of harmonic
oscillator eigenstates at thermal equilibrium

are solely determined by the mean thermal occupation number
nj(ω0, T).59 The nonequilibrium distribution{pn(t)} may be
globally characterized via the information entropy59,60

whereScanonical(t) corresponds to a (nonequilibrium) canonical
distribution, to which a temperature may be assigned, andNeff-
(t) is an effective number of uniformly occupied energy levels.34

Figure 5 shows thatS(t) (Neff(t)), derived from binned adiabatic
populations, converges toScanonical(t) (Ncanonical(t)), as derived
from the mean occupied state〈m〉t, and both are in very
satisfactory agreement with the quantum/classical Pauli master
equation. Although att ) 15 ps the adiabatic populations have
not yet relaxed toT ) Tbath(300 K), the distribution has reached
a quasi-thermal form (T > Tbath). It is well-known and easy to
show that a quasi-canonical distribution analoguous to eq 28,
with nj(ω0, T) replaced by〈n̂〉t, is stable in its analytical form
subject to a Pauli master equation with the detailed-balanced
rate coefficients given by eqs 18 or 22, such that only the mean
occupation number〈n̂〉t changes according to the linear rate law,
eq 23. Thus, the fact, that the populations of adiabatic energy
levels have arrived at a (still nonequilibrium) quasi-canonical
form well before t ) 15 ps, reflecting the detailed balance
property of our numerical TFS-TSH rate coefficients
〈pmfn(t;δt)〉/δt, provides in our view strong support for the
argument that the distribution will continue in following the
evolution toward a quantum statistical thermal equilibrium as
predicted by the quantum/classical PME.

3.2.3. Statistical Theory: TFS)TSH Quantum/Classical
Master Equation. In the following, statistical theory is applied
in an attempt to derive the hopping rateswmfn of the Pauli
master equation, eq 11, from the TFS-SH scheme (with

dephasing), eqs 2, 6, 7, 10, and 24, and the underlying model
Hamiltonian, eq 12. For the harmonic oscillator with linear
damping, the vibrationally adiabatic states are again (displaced)
HO eigenfunctions, centered at the origin

with displacementδq̂(t) andF(t) ) ∑lglQl(t). The adiabatic states
|øm[Q(t)]〉 are eigenstates ofĤq[q;Q(t)], eqs 2 and 24, which
may be rewritten as

And the eigenvalues are

The matrix elementsqmn[Q(t)] in the adiabatic basis are easily
evaluated to

and determine the classical equations of motion, eq 24, via

as well as the nonadiabatic coupling vector, with components
(eq 4)

which are time-independent in the present case (eq 33,m * n).
The nonadiabatic coupling is, therefore, simply given by

Equations 33, 35, and 36 imply that the vibrationally nonadia-
batic coupling is delocalized in the phase space (position space)
of the classical environmental degrees of freedom.

The adiabatic coherences evolving fromFmm(t) ) Fmm[t;Q(t)]
) 1 (tf 0) at short times are

wheret ) thop ) 0 is understood as the time origin of a coherent
propagation cycle. Immediately after a surface hop (t g thop),
due to our “hopping with complete dephasing” ansatz, we have

Figure 5. Time evolution of the nonequilibrium entropyS(t) ) ln
N(t) (in terms of an effective number of occupied energy levels) as
calculated from the adiabatic energy level populations and as obtained
from the mean occupied adiabatic state (assuming a quasi-canonical
distribution), compared to the quantum/classical PME prediction
(modified TFS-SH).

pn ) ( nj
nj + 1)n 1

nj + 1
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S(t) ) - ∑
m
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qmn[Q(t)] )

q0[Q(t)]δmn + x p
2µω0

{xn δm,n-1 + xn + 1 δm,n+1} (33)
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Fnn(t) = δmn, wherem is the occupied state. Insertion into eq 5
yields the (single-trajectory) rate equation (cf. eqs 6 and 7)

to second order in the nonadiabatic coupling (system-bath
interaction), in the Markovian approximation,Fmm(t′) = Fmm(t).
The apparent symmetry in the single-trajectory rate coefficients,
κnfm(t) ) κmfn(t) (eq 38), is broken by the requirement of
quantum/classical energy conservation,Kn + εn[Q(t)] ) Km +
εm[Q(t)], during hopping (see below). Ensemble averaging over
the classical heat bath variables thus gives the rate coefficients

of a quantum/classical Pauli master equation (eq 11), where the
subscriptmfn indicates sampling in the adiabatic statem and
observing the energy conservation constraint formfn. If Ḟ(t)
can be considered a stationary random process,〈Ḟ(t)Ḟ(t′)〉 =
〈Ḟ(t - t′)Ḟ(0)〉, the transition rates (t f ∞) may be written in
the Golden Rule form

using 〈Ḟ(τ)Ḟ(0)〉 ) -〈F̈(τ)F(0)〉. Note, however, that the bath
oscillators are coupled to each other (eq 34) throughq0(t) (eq
30). The implications are discussed below.

In fewest switches TSH, the bath force (time-derivative)
correlation function is implicitly sampled subject to the con-
straint (cf. eq 10)

whereemn ) dmn/xdmn‚dmn ) g/x∑lgl
2. The bath correlation

function appearing in eq 39 may then be expressed as

whereΘ[x(t)] ) Θ[(Ḟ(t))2 - 2pωnm∑lgl
2] is the step function,

τ ) t - t′, and the second line follows from the assumption
F(Q,P;t) = F(Q,P;0) ) Feq(Q,P). The latter corresponds to the
standard assumption made in situations where a small system
is coupled to a large but finite heat reservoir: Although the
relevant subsystem perturbs the environment causing it to
deviate from its initial equilibrium, this deviation may be
assumed irrelevant as long as the heat bath is large enough. In
the present case of a nonergodic reservoir this assumption may
still be used, because the exchange of energy quantapωnm is
distributed over a large number of bath DoF, according to the
prescription for the momentum adjustment in TFS-SH (eqs 9
and 10) and the nature of system-bath interaction (eqs 35 and
36).

Before evaluating eq 42, we need to consider the properties
of Ḟ(t). First, the forceF(t) ) ∑lglQl(t) is obtained by integrating
the classical equations of motion (eq 34) to48

whereFB(t) is a random force originating from the free bath
initial conditions, andγ(t) is the friction kernel of the GLE,
eqs 13 and 14. The force time-derivativeḞ(t), as obtained from
eq 43 and partial integration, is

using γ̆(t ) 0) ) 0. δF(t) is now a random force with shifted
bath initial conditions,48,52 analoguous to the one appearing in
the GLE, eq 13. Its statistical properties are given by eq 14.
More specifically, this applies only in the absence of the TFS-
TSH energy conservation restrictions as expressed by eqs 41
and 42 (n < m). The force time-derivative of eq 44 is
nonstationary in general, it is coupled to its own history through
q̆0(s) ) Ḟ(s)/µω0

2. Note, however, that limtf0 Ḟ(t) ) δḞ(t).
Since the memory in the time-evolution ofḞ(t) is related to

(the time-derivative of) the friction kernel, which in turn
expresses the weak time-retarded frictional coupling of the
quantum subsystem to its (classical) environment, it may be
assumed that the dominant contribution toḞ(t) is δḞ(t). The
influence of the bilinear coupling between bath oscillators (cf.
eq 34) may be taken into account perturbatively. To second
order, we have

Here, we restrict ourselfs to zeroth order,Ḟ(t) = δḞ(t), and argue
that the coupling between oscillators mainly serves to maintain
thermal equilibrium between the bath DoF.

Equation 42 is difficult to evaluate analytically in general,
except for downward transitions (n < m), where〈Ḟ(t)Ḟ(t′)〉 =
〈δḞ(t)δḞ(t′)〉 ) -µkBTγ̈(t - t′). In particular, it is not at all
evident that the step functionΘ[(Ḟ(t))2 - 2pωnm∑lgl

2], intro-
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wmfn )
|qmn|2

(pωmn)
2 ∫-∞

+∞
dτ e-iωnmτ 〈Ḟ(τ)Ḟ(0)〉mfn

)
|qmn|2

p2 ∫-∞

+∞
dτ e-iωnmτ〈F(τ)F(0)〉mfn (40)

(Pm‚emn)
2 )

(Ḟ(t))2

∑
l

gl
2

g 2pωnm ) 2pω0(n - m) (41)

〈Ḟ(t)Ḟ(t′)〉mfn ) ∫dPdQ F(Q,P;t) Ḟ(t)Ḟ(t′)Θ[x(t)]

= ∫dPdQ Feq(Q,P) Ḟ(0)Ḟ(-τ)Θ[x(0)]
(42)
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duced in eq 42 to account for quantum/classical energy
conservation (eqs 10 and 41), should generally yield the quantum
detailed balance propertywmfn/wnfm ) e-âpωnm for the transition
rateswmfn of eq 40. Here, we simply bypass this problem and
assumethat the energy conservation constraint introduces
(roughly) a factor of e-âpωnm for n > m (upward transitions),
and unity forn < m. The (approximate) validity of quantum
detailed balance has been demonstrated numerically above (see
also the analysis below, based on the fraction of rejected hops).
Because of the ad hoc inclusion of quantum/classical energy
conservation, the equilibrium densityFeq(Q,P) in eq 42, and
thus the force correlation spectrum (eq 40), should be rescaled
by the average fraction, (1+ e-âpω0)/2 for the damped HO, of
successful escape events from statem into statesn ) m ( 1.
Thus, for the linearly damped harmonic oscillator we obtain
the transition rates

which coincide with the quantum/classical transition rates
reported in eq 22, and we recover Oxtoby’s quantum prefactor55

from the TFS-TSH scheme (eqs 2-10 and 24) and, impor-
tantly, our dephasing procedure (implicit in eqs 37-40). This
is a remarkable result. Although we have obtained it via a rather
bold heuristic assumption regarding the issue of detailed balance,
this result is expected to hold (for the damped harmonic
oscillator) whenever the system-bath interaction potential is
dominated by the linear term-q̂F(t), where the bath forceF(t)
may be an arbitrary function of the positions of environmental
DoF, in other words, whenever the phenomenological ap-
plicability of a generalized Langevin equation (eq 13) may be
assumed. In particular, if the above rate theory applies to
situations with a large butnonergodicheat bath, it appears
natural to assume its validity also (and all the more) forergodic
heat reservoirs, as long as multiphonon effects of bath degrees
of freedom56,61 (especially relevant for high-frequency solute
oscillators) are not important. Note, however, that the transition
rates of eq 46 correspond to a special case only of the more
general rate expression eq 21, obtained as a quantum/classical
approximation to the quantum rate formula eq 16 via Oxtoby’s
correspondenceĈ+(ω) = Ĉcl(ω) and quantum detailed balance
(eqs 17 and 20). Whether the more general quantum/classical
rate expression of eq 21 is also reproduced by TFS-SH (with
dephasing) for a linearly dampedanharmonicoscillator, where
the vibrationally adiabatic states cannot be obtained analytically,
can only be decided by numerical simulation.

Before we provide additional numerical evidence for quantum
detailed balance being (approximately) obeyed by our modified
surface hopping scheme, we discuss in more detail various
origins of dephasing/decoherence as related to the validity of
our quantum/classical rate expression, eq 40.

3.2.4. Pure Dephasing and Energy Relaxation vs Quantum
Decoherence.Up to now, we have discussed the issue of
dephasing mainly from the perspective of a Redfield master

equation (eq 15) in the secular limit. In particular, in the absence
of pure dephasing the process of population relaxation (energy
relaxation) gives rise to a loss of phase coherence between
energy levels (eq 19). Here we discuss dephasing/decoherence
in the context of quantum/classical dynamics from a broader
perspective, using more precise terminology, by focusing
on the poineering approach of Rossky and co-
workers.29,30,31,62

As noted by Rossky,31 the origins of dephasing (in quantum/
classical dynamics) basically include two components. The first
is due to fluctuations of the energy levels involved in transitions,
i.e., due to the effect of a classical-like random external field
coupled “diagonally” to the energy states of the quantum
subsystem. This component naturally appears as pure dephasing
in a quantum/classical setting, as a result of the adiabatic energy
statesεm[Q(t)] being parametrically dependent on the classical
coordinates. Averaging over classical initial conditions then
leads to a fading out of the statistically superposed individual
phase factors e-i∫t

0dτωnm[Q(τ)] as, for example, in Kubo’s stochastic
theory of line shape via random frequency modulation.60 In the
present context, this requires that the adiabatic energy levels
εm[Q(t)] ) pωm[Q(t)] are shifted differently, and therefore
relative to one another, by the motion of classical external
degrees of freedom. The phase factors e-i∫t

0dτωnm[Q(τ)], primarily
reflecting the evolution of coherences, indirectly affect the
quantum/classical transition rateswmfn (cf. eqs 37-40). Note
that dephasing related to energy dissipation/population relaxation
(lifetime broadening of energy levels), as introduced in this
paper, may intuitively also be grouped into this category. It is,
however, physically distinct from pure dephasing, since it
originates from a “nondiagonal” coupling (to the environment),
causing the subsystem to change state. In a quantum trajectory
picture, these state changes (transitions) occur at random times
distributed according to the microscopic transition rates, thereby
interrupting the coherent evolution of the subsystem and leading
to dephasing of an ensemble of subsystems. In contrast to pure
dephasing, dephasing due to population relaxation is not
naturally included in single-trajectory quantum/classical dynam-
ics methods and must be introduced in an ad hoc manner (if
considered important). As will become apparent below, the
quantum/classical pure dephasing effects, although being an
ensemble phenomenon, seem to have much in common with
quantum decoherence, to be discussed below, since both effects
crucially depend on the difference of “forces” exerted on the
environment by different states of the subsystem. This state-
ment is, however, to be understood with some caution,26,27

due to our lack of classical analogues for quantum deco-
herence.

The second component of dephasing, as noted by Rossky, is
of a genuinely quantum mechanical origin and is referred to as
quantum decoherence in the more narrow sense of the
meaning.26-28 It emerges as follows: Consider for simplicity a
two-state quantum subsystemS with basis states|0〉 and |1〉,
initially in a superposition state|ΨS〉 ) a0|0〉 + a1|1〉, which
interacts with an environmentE, initially in some state|iE〉. So
the total systemSE is considered initially in a pure, uncorrelated
state (product state)|Ψ〉 ) |ΨS〉|iE〉, where the possibility of
initial entanglement is neglected here. As the total system
evolves under the action of the Hamiltonian, its initial state will
generally be turned into an entangled state, i.e., a superposition
of product states

wmfm+1 ) m + 1
2µpω0

Ĉcl(ω0)
2e-âpω0

1 + e-âpω0
)

2kBT

pω0(2nj + 1)

γ̂(ω0)

2
nj(m + 1)

wmfm-1 ) m
2µpω0

Ĉcl(ω0)
2

1 + e-âpω0
)

2kBT

pω0(2nj + 1)

γ̂(ω0)

2
(nj + 1)m (46)

|Ψ〉 ) (a0|0〉 + a1|1〉)|iE〉 f f f
e-iĤt/p

|a0
(E)(t)〉|0〉 + |a1

(E)(t)〉|1〉
(47)
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where the conditional state vectors|am
(E)(t)〉 correspond to

close-coupling amplitudes (partial wave packets) of the environ-
ment, with their norms〈am

(E)(t)| am
(E)(t)〉 ) pm(t) equal to the

probability of occurrence of the subsystem state|m〉. The states
|0〉 and |1〉 may be the Born-Oppenheimer ground and (first)
excited states of a large molecule or electronic impurity states
in a liquid or solid, and|am

(E)(t)〉 (m ) 0, 1) the partial nuclear
wave packets associated with the (adiabatic or diabatic)
electronic states involved. The overlapsJmn(t) ) 〈am

(E)(t)|an
(E)(t)〉

for m * n need not equal zero. To the extent, however, that the
forces on the environmental degrees of freedom depend on the
subsystem state|m〉, the overlapsJmn(t) will more or less quickly
decay to zero. The subsystem reduced density matrix (in the
{|m〉}-basis) is obtained as

whereFmm(t) ) pm(t) ) Jmm(t) andFmn(t) ) Jnm(t). For a general
HamiltonianĤ ) |0〉Ĥ00

(E)〈0| + | 1〉Ĥ11
(E)〈1| + V̂ it is easily seen,

that quantum decoherence in the{|m〉}-basis, in order be
operative, requires that the environmental HamiltonianĤmm

(E) is
sufficiently dependent on the subsystem state|m〉, i.e., suf-
ficiently strong “diagonal” system-environment interaction. To
zeroth order in the interstate couplingV̂ ) |0〉V̂01

(E)〈1| +
|1〉V̂10

(E)〈0|, the evolution of overlaps (cf. eq 47) is obtained
as

Thus, as the overlaps of conditional environmental states
|am

(E)(t)〉 tend to zero, the subsystem reduced density operator
becomes diagonal in the{|m〉}-basis (eq 48). If this occurs
rapidly enough, quantum decoherence significantly precedes
population relaxation, sincepm

(0)(t) ) Jmm
(0) (t) ) |am|2 to zeroth

order in V̂. On longer time scales, the balance between the
creation of coherences (via the interstate coupling) and their
decay (via quantum decoherence) leads to population (energy)
relaxation in the subsystem, which in turn defines an upper limit
for the time scale of dephasing (eq 19). Note, however, that we
have left open the precise nature of the (electronic) states|0〉
and|1〉. They may correspond to adiabatic (Born-Oppenheimer)
or diabatic molecular energy states, with the interstate coupling
term V̂ interpreted appropriately. The emergence of the deco-
herent or pointer basis26,27 may then intuitively be anticipated
as the result of the interplay between the nondiagonal interstate
coupling and the diagonal system-environment interaction. In
general, at least the initial state of the environment is not a
pure state, which introduces the requirement of averaging
over different pure state evolutions|ΨS〉| iE〉 f |a0

(iE)(t)〉|0〉 +
|a1

(iE)(t)〉|1〉 of the total system, with appropriate statistical
weightswiE. In any case, the underlying mechanism of quan-
tum decoherence, and the associated loss of purity of the
subsystem (eqs 48-49), operates at the level of individual
pure state evolutions of the total system (eq 47). For
quantum/classical pure dephasing, the individual member
of the subsystem ensemble does not suffer a loss of
purity.

At this point we may already draw some general conclusions
on the nature of the decoherent basis in quantum/classical

simulations of condensed phase vibrational energy transfer. The
quantum/classical system-environment interaction is of some
form V̂[q;Q(t)] (cf. eqs 1 and 2), i.e., diagonal in the space of
q̂-eigenstates. Specifically, we have chosen the simple formV̂SB

) - q̂∑lglQl(t). Quantum decoherence is, therefore, expected
to occur effectively in phase space,27 keeping a balance between
localization in position- and momentum-space. If we insist to
work in a (diabatic or adiabatic) energy basis{|n〉}, which
surface hopping methods obviously imply, the system-bath
interaction necessarily involves interstate (nondiagonal) cou-
plings Vmn[q,Q(t)] (or respective kinetic couplings between
adiabatic states), and maybe also significant diagonal termsVmm-
[q,Q(t)] (εm[Q(t)]). Whether quantum decoherence will occur
to an appreciable degree in the energy basis chosen, will be
determined by the state dependence of the diagonal terms and
the relative strength of interstate coupling. In the present model
situation, the system-environment interaction is exclusively
nondiagonal, both in the diabatic (bare solute) vibrational energy
basis, Vmn

(dia)(t) ) - qmn∑lglQl(t), and in the vibrationally
adiabatic energy basis,Vmn

(adia)(t) ) - ip∑ldmn
(l) Q̇l(t) (eqs 32-36).

Quantum decoherence is, therefore, predicted to be rigorously
absent in both energy bases (see below). We note, however,
that the significance of dephasing as related to energy/population
relaxation is left untouched by this argument.

Prezhdo and Rossky31,62 have implemented the above ideas
in the domain of quantum/classical surface hopping dynamics
starting from the semiclassical frozen Gaussian wave packet
(GWP) approach of Neria and Nitzan.63 Within the limits of
second-order perturbation theory, a Golden Rule expression for
the quantum rate of a nonadiabatic transitionmfn may be
obtained as62

where Vmn
(qc)(t) ) - ipdmn[Q(t)]‚Q4 (t) (in our notation) is the

quantum/classical nonadiabatic coupling between adiabatic states
(eqs 3-5), written as a Hamiltonian term and evolved on the
initial adiabatic potential energy surfaceεm[Q(t)], and the
averaging〈...〉B is done over a classical initial distribution. The
meaning of the overlapJ(mn)(t) is somewhat different from above,
yet closely related. It is defined as the overlapJ(mn)(t) )
〈G(m)(t)|G(n)(t)〉 of two frozen GWPs64 evolving on statesm
andn

composed of a product of single-particle (single-DoF) Gaussians
|Gl

(m)(t)〉, which are characterized by position and momentum
parametersQl

(m)(t) andPl
(m)(t), respectively, governed by clas-

sical dynamics on them th potential energy surface, and a fixed
real valued width parameteral. The overall phase factor contains
the classical LagrangianLm(t) ) K(t) - εm[Q(t)]. Consequently,

F̂S(t) ) TrE|Ψ(t)〉〈Ψ(t)| ) (p1(t) J01(t)
J10(t) p0(t) ) (48)

Jmn
(0)(t) ) 〈am

(E;0)(t)| an
(E;0)(t)〉

) am
/an〈iE|exp{ i

p
Ĥmm

(E)t}exp{- i
p
Ĥnn

(E)t}|iE〉 (49)

wmfn
(qm) ) 1

p2 ∫-∞

+∞
dt 〈Vmn

(qc)(t)Vnm
(qc)(0) J(mn)(t)〉B (50)

|G(m)(t)〉 ) ∏l|Gl
(m)(t)〉exp{ i

p
∫0

t
dτ Lm(τ)}

Gl
(m)(Ql, Pl;t) ) x4 al

π
exp{-

al

2
[Ql - Ql

(m)(t)]2 +

i
p

Pl
(m)(t)[Ql - Ql

(m)(t)]} (51)
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the complex valued overlapJ(mn)(t) may be written as a product
of nuclear overlap and phase terms62-64

where∆K(mn)(t) ) K(m)(t) - K(n)(t) is the difference in kinetic
energies between trajectories propagated on them th andn th
surfaces, respectively, and∆εn

(mn)(t) ) εn
(m)[Q(t)] - εn

(n)[Q(t)].
Note that εm

(m)[Q(t)] - εn
(n)[Q(t)] ) ∆εmn

(m)(t) + ∆εn
(mn)(t) has

been used, where the∆εn
(mn)(t) term has apparently been

omitted by Prezhdo and Rossky.62

With eq 52 plugged into the rate expression eq 50, a quantum/
semiclassical approximation to the quantum Golden Rule rate
is obtained. Staib and Borgis, on the other hand, have obtained
the quantum/classical rate expression65

The difference between eqs 50 and 53 is conveniently expressed
as62

in terms of the decoherence functionD(mn)(t), such that

In other words, the quantum/classical rate formula of eq 53 takes
into account only part of the overlapJ(mn)(t), namely a quantum/
classical part of the phase termJphase

(mn) (t) (eq 52), while the rate
expression of eq 55 provides a quantum/semiclassical correction
in terms of the decoherence functionD(mn)(t) (eq 54), most

notably determined by the nuclear overlapJoverlap
(mn) (t) (eq 52) of

two frozen Gaussian wave functions evolving on the two
nonadiabatically coupled surfacesεm[Q(t)] andεn[Q(t)], respec-
tively.

Obviously, if the forces experienced by the classical degrees
of freedom strongly depend on the adiabatic state of the quantum
subsystem, the nuclear overlap contained in the decoherence
function will decay quickly as the trajectories{Q(m)(t),P(m)(t)}
and {Q(n)(t),P(n)(t)} diverge. This is typically the case for
electronically nonadiabatic processes in large molecules and
condensed phases. If, however, the forces exerted on the
classical DoF happen to be almost insensitive to the adiabatic
quantum state, the decoherence function will stay close to unity,
D(mn)(t) = 1, and the quantum/semiclassical rate expression of
eq 55 practically converges to the quantum/classical limit eq
53. The latter naturally includes quantum/classical pure dephas-
ing effects through its phase factor, as mentioned above. Since,
however, both quantum/classical pure dephasing and quantum
decoherence effects crucially depend on topological differences
between potential surfaces, they are closely related and therefore
not independent of one another.

When our nonadiabatic couplingsVmn
(qc)(t) ) - ip dmn[Q(t)]‚

Q4 (t) of eqs 35-36 and∆εmn
(m)(t) ) pωmn ) pω0(m - n) (eq 32)

are substituted into the quantum/classical rate formula (eq 53),
with additional account of quantum/classical energy balance,
we immediately obtain our rate expression of eq 40 (assuming
stationarity of the bath forceF(t) and its time derivative).
Quantum/classical pure dephasing effects are rigorously absent
due to the fact that the bare adiabatic energy surfacesεm[Q(t)]
(eq 32) all experience the same time-dependent vertical shift
by a displacement of the classical degrees of freedom. Moreover,
this also implies that the forces (eq 34) on the classical DoF
due not depend on the adiabatic state of the quantum oscillator.
The decoherence function is thereforeD(mn)(t) ≡ 1 rigorously.
Trajectories evolving on different adiabatic surfaces from the
same initial conditions due not diverge; thus,Joverlap

(mn) (t) ) 1
(eq 52), and also∆K(mn)(t) ) 0 and ∆εn

(mn)(t) ) 0 (eq 54).
Thus, both quantum/classical pure dephasing and quantum/
semiclassical decoherence effects in the adiabatic basis are
rigorously absent for our present model, as to be expected for
a perfectly harmonic system. The simultaneous absence of both
effects should also not come as a surprise due to their close
relationship.

As a result, the phase factor eiωmnt, contained in the quantum/
classical rate expression eq 53, is the only factor out of the
semiclassical expression for the overlapJ(mn)(t) (eqs 52 and 54)
that survives. This justifies the neglect of genuine quantum
decoherence effects in the vibrationally adiabatic energy basis
for the present model and the use of quantum/classical rate
expressions eqs 40 and 53. What remains to be considered is
dephasing due to energy relaxation, operating on a longer time
scale. This effect has been included in our “hopping with
complete dephasing” implementation of TFS-SH. As noted
above, it takes into account the stochastic interruption of
coherent evolution by quantum transitions, repreparing the
subsystem in a new quantum state, and ensures that the ensemble
averaged transition rateswmfn are consistent with the occupied
state m in the Markovian limit. The latter component of
decoherence/dephasing, which is always present in dissipative
systems due to relaxation of energy level populations, but is
usually neglected in quantum/classical simulations, has been
shown in previous subsections to be important for establishing
quantum detailed balance in surface hopping simulations of
vibrational energy relaxation.

J(mn)(t) ) Joverlap
(mn) (t) Jphase

(mn) (t)

Joverlap
(mn) (t) ) ∏

l

〈Gl
(m)|Gl

(n)(t)〉

) ∏
l

exp{-
al

4
[Ql

(m)(t) - Ql
(n)(t)]2 -

1

4p2al

[Pl
(m)(t) - Pl

(n)(t)]2 +
i

2p
[Ql

(m)(t) -

Ql
(n)(t)][Pl

(m)(t) + Pl
(n)(t)]}

Jphase
(mn) (t) ) exp{- i

p
∫0

t
dτ [Lm(τ) - Ln(τ)]}

) exp{- i
p
∫0

t
dτ [∆K(mn)(τ) - ∆εmn

(m)(τ) -

∆εn
(mn)(τ)]} (52)

wmfn
(qc) ) 1

p2 ∫-∞

+∞
dt 〈Vmn

(qc)(t)Vnm
(qc)(0) exp{ i

p
∫0

t
dτ ∆εmn

(m)(τ)}〉B

(53)

J(mn)(t) ) exp{ i
p
∫0

t
dτ ∆εmn

(m)(τ)}D(mn)(t)

D(mn)(t) ) Joverlap
(mn) (t) exp{- i

p
∫0

t
dτ [∆K(mn)(τ) - ∆εn

(mn)(τ)]}
(54)

wmfn
(qm) =

1

p2 ∫-∞

+∞
dt 〈Vmn

(qc)(t)Vnm
(qc)(0) exp{ i

p
∫0

t
dτ ∆εmn

(m)(τ)}D(mn)(t)〉B

(55)
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3.2.5. Detailed Balance: Numerical Evidence and Theo-
retical Arguments. While the previous discussion served to
justify our “hopping with complete dephasing” implementation
of TFS-TSH and the use of quantum/classical rate expressions,
eqs 40 and 53, it is not a priori self-evident that the momentum
adjustment along the nonadiabatic coupling vector accompany-
ing a successful hop and the associated existence of rejected
hops automatically guarantee quantum detailed balance. Here,
we provide additional (numerical) support for quantum detailed
balance being (approximately) obeyed by our modified TFS-
SH scheme, and show how the statistics of frustrated hopping
is related to it, provided that additional requirements are met.
In surface hopping quantum/classical dynamics the detailed
balance relationwmfn/wnfm ) e-âpωnm (if applicable) for any
pair of transitionsmfn andnfm (n > m) can only be achieved
through the rejected hopping “cutoff” (eq 42), operating
exclusively on the upward transition (m f n). During simula-
tions, the number of transitionsm f m ( 1 (Nup, Ndown) as
well as the number of rejected hops (Nrejected) has been counted
at each time step, such thatNup(t) + Nrejected(t) is the number of
m f m + 1 transitions attempted. Consequently, the statistical
ratio pm+1/pm ) nj/(nj + 1) ) e-âpω0 at thermal equilibrium
(provided that quantum detailed balance applies) should be
related to frustrated hopping statistics through

where the fraction of rejected hops is a measure of that part of
the classical phase space density which does not facilitate
upward transitionsm f m + 1 in the quantum subsystem, due
to quantum/classical energy conservation restrictions. The same
should also approximately hold true for the time-integrated
quantitities∫0

τ dt〈N(t)〉/τ. Figure 6b shows that this is the case
(for TFS-TSH with dephasing), where the ensemble averaged
data have been additionally averaged over time windows of 200
fs. The statistics derived from〈Nup(t)〉 and 〈Nrejected(t)〉 is not
satisfactory, but from the time-integrated data we judge that
detailed balance is only approximately obeyed. The theoretical
frustrated hopping fraction as derived from detailed balance is
1 - e-âpω0 = 0.698 forω0/2πc ) 250 cm-1 andT ) 300 K.
Working backward from the numerical data (time-integrated
quantities), we would obtainωeff/2πc = 225 ( 31 cm-1. This
means that our above analysis of the approach to thermal
equilibrium, based on the oscillator frequencyω0/2πc ) 250
cm-1, is not perfectly sound, but a reanalysis is skipped here
because it gives only minor corrections.

Interestingly, without dephasing we observe (Figure 6a) that
the fraction of rejected hops is typically larger, i.e., 1- e-âpωeff

> 1 - e-âpω0, giving an effective oscillator frequencyωeff/2πc
= 272 ( 39 cm-1. Although, within the limits of numerical
accuracy, the frustrated hopping fraction of Figure 6a seems to
suggest that quantum detailed balance is approximately obeyed
also without dephasing, we have strong reasons to believe
(Figure 3a) that the oscillator relaxes to a quasi-classical rather
than a quantum statistical equilibrium. A resolution of this
apparent contradiction may be seen by inspection of the
quantum/classical rate expression eq 40 and its derivation, eqs
37-40, from the TSH transition probabilities (eqs 5-7).
Equation 37 for the single-trajectory vibrational coherences
Fmn(t), at short timest g thop after the preceding surface hop
(thop ) 0), can only be valid ifFmn(thop) ) 0 (or approximately
so). For our “hopping with complete dephasing” modification
of TFS-SH this is the case. Specifically,Fnn(thop) ) δmn, i.e.,

the coherences and populations att g thoparecausally connected
to (originate from) the pure adiabatic state|m〉, the currently
occupied state. Without dephasing, eq 37 must be replaced by

with the integrals now runnning over the full time range of
simulations starting att0 ) 0, whereFnn(t0) ) δm0,n andFmn(t0)
) 0, and all coherences and populations evolving from this
initial state up to timet have in principle to be taken into
account. This makes it difficult to relate the Pauli rate coef-
ficients wmfn ) 〈pmfn(t;δt)〉/δt (eq 11), obtained via surface
hopping probabilities of eq 7, to quantum/classical Golden Rule
rate theory (eqs 21, 22, 38-40, and 46). In particular, we have
observed (Figures 2a, 3a) that the original TFS-SH scheme
implies comparatively large coherencesFmn(t) ) am(t)an

/(t) of
the currently occupied vibrationally adiabatic statem(t) with
higher energy statesn > m, and an undue bias toward upward
transitionsm f m + 1 on the single-trajectory level. Although
the quantum/classical energy balance provides an overall
“thermodynamic cutoff” for upward transitions, reflected by the

〈Nrejected(t)〉
〈Nup(t)〉 + 〈Nrejected(t)〉

) 1 - e-âpω0 (56)

Figure 6. Frustrated hopping fraction〈Nrejected(t)〉/{〈Nup(t)〉 +
〈Nrejected(t)〉} computed from time-instantaneous and time-integrated
quantities, respectively (see text), as compared to the theoretical detailed
balance prediction, 1- e-âpω0 = 0.698, for a: the original, and b: our
modified TFS-TSH. Numerical data points with error bar serve to
indicate the respective overall statistical uncertainties (<10%).

Fmn(t) ) - ∑
k*m

∫t0

t
dt′ e-iωmn(t-t′) dmk‚Q4 (t′) Fkn(t′) +

∑
k*n

∫t0

t
dt′ e-iωmn(t-t′) Fmk(t′) dkn‚Q4 (t′) (57)
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frustrated hopping fraction (eq 56), the single-trajectory coher-
ences (eq 57) are not causally connected to thecurrently
occupiedstate|m〉 but originate from theinitial adiabatic state
|m0〉. It is therefore argued that quantum/classical energy
conservation, as reflected by the frustrated hopping fraction for
transitionsm f m + 1, is in general a necessary butnot
sufficient condition for establishing detailed balance in the
quantum subsystem. A second requirement is the consistency
of single-trajectory coherences and populations with the oc-
cupied state indexm(t), such that the transition eventsk f n
and n f k are causally connected to states|k〉 and |n〉,
respectively. Again, this underscores the significance of intro-
ducing, at the single-trajectory level, a mechanism of dephasing
as related to population relaxation, but leaves open the question,
why the original TFS-SH scheme specifically seems to entail
relaxation of the subsystem oscillator toward a quasi-classical
thermal equilibrium. The latter issue surely deserves further
consideration.

For the sake of comparison with the results of Parandekar
and Tully,41 we note that the case of a quantum two-level system
{|0〉,|1〉} corresponds to a special situation, where eq 57 naturally
reduces (exactly) to eq 37

leading to TFS-TSH Golden Rule rate coefficients (cf. eq 40)

with m ) 1 (0) andn ) 0 (1), and the subscriptm f n as a
reminder for observing quantum/classical energy conservation
constraints. Although the coherences at timet originate from
|m0〉 at t ) t0, and not from|m〉 at t ) thop, quantum detailed
balance may still be maintained, as argued shortly below, since
the single-trajectory quantum reference populationsFnn(t) )
|an(t)|2, not the occupied state populationspn(t) ) δn,m(t),
(rapidly)cyclebetween statesn ) 0, 1. An important similarity
of our present model of vibrational energy relaxation and the
two-state model of Parandekar and Tully41 is the constancy in
time of the nonadiabatic coupling vector (cf. eq 35). In both
cases the quantum subsystem is continuously driven by an
external (generalized) force. The essential difference between
the above two-state model and our present model situation is
the latter’s multilevel feature. As observed by Parandekar and
Tully,41 the ensemble averaged squared quantum amplitudes
reflect a uniform distribution,〈|a0|2〉 ) 〈|a1|2〉 ) 0.5, at
asymptotic equilibrium, while the asymptotic ensemble averaged
occupied state populations are in accord with a quantum
statistical equilibrium (quantum detailed balance) at specified
finite bath temperature,〈p1〉/〈p0〉 ) e-âpω10. The authors note
that the discrepancy between (single-trajectory or ensemble
averaged) quantum reference and occupied state populations,
Fnn(t) and pn(t), respectively is an essential requirement (or
consequence) of TFS-SH, because quantum detailed balance
is achieved through the appearance of frustrated hops (by
imposing quantum/classical energy balance). Without frustrated
hopping,〈pn(t)〉 = 〈Fnn(t)〉, and the quantum two-level system
would approach infinite temperature. On this part, we fully
agree.

Moreover, Parandekar and Tully (seem to) claim that
frustrated hopping, leading to the discrepancy between〈Fnn〉 and

〈pn〉, is a necessary andsufficientfeature of the original TFS-
TSH scheme for obtaining quantum Boltzmann populations at
long times in a general multilevel quantum subsystem. On this
part we disagree. As shown for our damped harmonic oscillator
case (Figures 2a and 3a), the original TFS-SH scheme entails
relaxation of the excited quantum oscillator (in terms of occupied
state populations), but not toward a quantum statistical equi-
librium. As implicit in the evolution of the mean adiabatic
occupation number〈n̂ad〉t (Figures 2a and 3a), quantum ampli-
tudean(t) leaks out into statesm0 ( 1, m0 ( 2, etc. successively
accessible from theinitially occupied adiabatic statem0. No state
other thanm0 ) 5 may attain a quantum reference population
close to unity,Fnn(t) = 1, at later times (not shown here, but cf.
ref 34), just as a consequence of the unitary time-reversible
Schrödinger dynamics. Such an event of state vector recurrence
to |ΨS(t)〉 = |ΨS(0)〉 ) |m0〉 is actually contained in the single-
trajectory sample of Figure 2a (〈n̂ad〉t = m0 ) 5), with observable
consequences for the evolution of the occupied statem(t) (see
below). Thus, the single-trajectory quantum amplitudes of the
original TFS-SH generally cannot in any way be interpreted
as having evolved from an initial state other than|m0〉. This is
in contrast to the special case of a two-level system, where the
quantum amplitude merelycyclesbetweentwo states. For our
modified TFS-TSH scheme (Figures 2b, 3b), thereis a
discrepancy between the expectation value〈n̂ad〉t and the
occupied state indexm(t) (Fmm(t) andpm(t)) and their ensemble
averaged values, but it is keptminimal. During unitary quantum
evolution between surface hops amplitude spreads into neigh-
boring states of thecurrently occupied adiabatic statem,
prepared in the preceding hop through our “hopping with
complete dephasing”. No adiabatic state other thanm (state
vector revival) may acquire a quantum reference population
close to unity. The range of states with significant quantum
amplitude is usually dominated by the currently occupied state
and includes those states which aredirectlyaccessible from the
latter (n ) m ( 1 via matrix elementsqmn). In contrast, when
using the original TFS-SH scheme the currently occupied state
and its neighbors may be contained in the small-amplitude tail
of the quantum superposition|ΨS(t)〉 ) ∑nan(t)|n〉. In this typical
rather than exceptional case, during single-trajectory evolution
the occupied state indexm(t) will consequently be forced to
evolve toward the large-amplitude center of the superposition.
With |m0〉 being an energetically excited state, the center of the
quantum superposition evolves toward higher energy states
(〈n̂ad〉t g m0), while the occupied state index is more likely to
evolve toward lower energy states (quantum/classical energy
balance), placing the currently occupied statem(t) in the lower
energy tail of|ΨS(t)〉. State vector revivals, full or partial, offer
an observable signature of the occupied state being pushed back
toward the (higher energy) center of the quantum superposition
(undue bias toward upward transitions), if permitted by the
energy conservation constraint. Such signatures are clearly
visible in Figure 2a, including a full recurrence and at least two
partial (attempted) ones. We believe that this phenomenon is
at the heart of our observation that the original TFS-TSH
scheme fails to reproduce quantum detailed balance even
approximately for our present model, as an example of a general
multilevel quantum subsystem. Again, a two-level system
contains by definition only two states which aredirectly
accessible from each other, one of which may be the currently
occupied one. It appears practically unimportant, from which
of the two possible initial states,m0 ) 0 or 1, the current single-
trajectory coherences and populations have evolved. Both states
may attain a quantum reference populationFnn(t) ) 1. In fact,

F10(t) ) - ∫t0

t
dt′ e-iω10(t-t′) d10‚Q4 (t′){F00(t′) - F11(t′)} (58)

wmfn ) 〈2Re{dmn‚Q4 ((t) Fnm(t)}
Fmm(t) 〉

mfn

= ∫-∞

+∞
dτ e-iωnmτ〈dmn‚Q4 (τ) dmn

/ ‚Q4 (0)〉mfn (59)
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the quantum amplitudes at timet may equally well have emerged
from either initial state, just as a result of time-reversal
symmetry. Tully’s original and our modified TFS-TSH scheme
are therefore expected to give the same results; i.e., the “hopping
with complete dephasing” modification appears unnecessary,
in the case of a quantum two-state system.

In summary, the above arguments are just another variant of
our theme saying that, in addition to observing the quantum/
classical energy balance during hopping, thesingle-trajectory
quantum reference state|ΨS(t)〉 should be consistent with
(causally connected to) the currently occupied statem(t), to
obtain meaningful TFS-SH rate coefficients and reproduce
quantum detailed balance in a general multilevel quantum
subsystem.

To complete our discussion of Parandekar and Tully’s work,41

we just add two remarks related to thedynamicsof approach
to a quantum thermal equilibrium. First, the authors conclude
that the attainment of a quantum statistical equilibrium depends
(crucially?) on the fact that their quantum two-state variables
X ) |a1|2 ) 1 - |a0|2 and Y ) a0a1

/ + a1a0
/ are statistically

separable from the classical momentum (of the chain atom
directly coupled to the quantum subsystem in their model), i.e.,
classical momentum and quantum amplitudes are uncorrelated.
In light of Golden Rule rate theory (eqs 58 and 59), it appears
to us that this may not be quite right. In fact, eq 58 (eq 37)
shows that (single-trajectory) coherences and bath momenta are
dynamically correlated, such that the coherences can be
eliminated from the equations of motion, when focusing on the
population dynamics within second-order perturbation theory
for the subsystem density operator. On the ensemble level, the
coherences may be considered irrelevant (in the sense of coarse-
graining as implied by a Pauli master equation), but still the
statistics of coherences should be related to the statistical
properties of bath momenta. Second, as a corollary, from the
TFS-SH transition/hopping probabilities (eqs 5-7; cf. eq 59)
being proportional to quantum coherences and classical mo-
menta (projected onto the nonadiabatic coupling vector) it
follows by way of eq 58 that, within Golden Rule rate theory,
the hopping rate coefficientswmfn are related to (the Fourier
transform of) acorrelation functionof projected bath momenta
(eq 59; see also eqs 50, 53, and 55). Thus, the hopping rate
coefficient (eq 59) contains the dynamical correlation between
quantum coherences and classical bath momenta in terms of a
(projected) momentum correlation function. Altogether, the
above comments on Parandekar and Tully’s important work are
not meant as harsh criticism (or hair-splitting), but rather as a
complementary rate theoretical view on the TFS-TSH method
and its ability to describe the approach to thermal equilibrium
of an intrinsically multilevel quantum subsystem.

3.3. Discussion.We have investigated the statistical mechan-
ical properties of Tully’s fewest switches surface hopping
method for the model of a linearly damped harmonic oscillator.
In its original version, TFS-SH was shown to fail in producing
an asymptotic quantum statistical thermal mixture of vibra-
tionally adiabatic states. Instead, a quasi-classical asymptotic
thermal distribution is observed. While the numerical frustrated
hopping statistics seems to be in accord with quantum detailed
balance, the origin of the above failure is traced back to the
single-trajectory quantum amplitudes evolving coherently from
the initial adiabatic state|m0〉 at time t0 ) 0, rather than from
the currently occupied state|m〉, prepared in the preceding hop
at time thop. As a remedy, we have suggested resetting the
coherently evolving state vector to the new adiabatic state,
|Ψ(thop)〉 f |øn[Q(t)]〉, during hopping (m f n). This procedure

can be motivated by a variety of related arguments, applying
to dissipative subsystems as a result of their coupling to a large,
effectively thermal environment. First, simple considerations
based on a Redfield master equation in the secular limit show
that the rateswmfn of local population relaxation define a
minimum rate of dephasing. Second, in a more microscropic
description, the rates of escape eventsmf n from the currently
occupied adiabatic state|m〉 should, after some short transient
period following the preceding hop (t ) thop), become inde-
pendent of the previous history (t e thop) of the stochastically
evolving occupied statem(t), and of the underlying single-
trajectory adiabatic coherences and populations, determining the
hopping statistics for times up tothop (emergence of Markovian
subdynamics). Third, the property of quantum detailed balance,
wmfn/wnfm ) e-âpωnm for any pair of statesm andn, requires
that the surface hopping rate coefficientswmfn ) 〈pmfn(t;δt)〉/
δt andwnfm are sampled under conditions, that the composite
quantum/classical system may be considered as prepared in
statesF̂SB(Q,P) ) |m〉F(m)(Q,P)〈m| and|n〉F(n)(Q,P)〈n|, respec-
tively, shortly after (or, approximately, immediately at) the
preceding hop, where the classical phase space densities are
F(k)(Q,P) = Feq

(k)(Q,P). For a quantum system immersed in a
large heat reservoir (even a nonergodic one), individual non-
equilibrium classical environmental trajectories generated by the
TFS-SH scheme may for practical purposes indeed be regarded
as members of a classical thermal ensembleFeq

(m)(Q,P), pos-
sibly depending on the occupied statem of the quantum
subsystem. Resetting the coherently evolving quantum state
vector during hopping, as suggested, then naturally meets, upon
ensemble averaging, the above physical requirements. The
overall picture of TFS-SH thus suggested is one where both
quantum and classical subsystems are affected in a discontinuous
manner (apparent “collapse” and momentum adjustment, re-
spectively) during hopping.

Our “hopping with complete dephasing” version of TFS-
TSH, which was shown to (approximately) fulfill quantum
detailed balance, might be considered a too drastic modification
of Tully’s original scheme. Indeed, the latter has proven a very
useful tool especially for modeling electronically nonadiabatic
processes and proton/hydrogen transfer. Keeping at least some
degree of coherence across hopping events may, for instance,
be necessary for a better description of possible interference
effects in the case of successive avoided crossings. On the other
hand, the necessity of including decoherence effects has been
stressed by quite a number of research groups,25,29-32,39and the
general notion of quantum decoherence in open system dynam-
ics has by now become widely accepted, even though still
subject to debate.28 In any case, the physical nature of quantum
coherences produced by classical external time-dependent fields
is different from those generated by quantum system-environ-
ment interactions.66 Quantum system-bath correlations arising
from diagonal (in the{|n〉}-space) interactions provide a
mechanism for localdecay of coherence in a subsystem.27

Classical external driving fields, even if subject to quantum/
classical backreaction, generally tend to spread coherence, and
thus population, (almost) uniformly across the quantum state
space.34,41In particular, for vibrationally nonadiabatic transitions
we have observed that, when hopping takes place to lower
energy states during a single surface hopping trajectory,
coherences involving higher energy states are maintained,
leading as argued to the above failure of Tully’s original SH
scheme. Ensemble averaging cannot generally be expected to
provide a remedy to this unphysical situation, except maybe
for special cases. Without ad hoc inclusion of decoherence/
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dephasing effects there is no way to arrive at a rigorous quantum
statistical mixture for the ensemble averaged subsystem density
operator.

To place the suggested modification of TFS-TSH in a clear
general context, we have tried to identify, in a fairly detailed
discussion, various mechanisms of decoherence/dephasing as
relevant to quantum/classical dynamics simulations. While
quantum/classical pure dephasing is naturally included in
QCMD methods, genuine quantum decoherence can only
approximately be taken into account via quantum/semiclassical
corrections. Both are related to topological differences between
potential energy surfacesεm[Q(t)] andεn[Q(t)], i.e., sufficiently
strong diagonal system-environment interaction, and are rigor-
ously absent in the vibrationally adiabatic basis for the present
model situation of a linearly damped harmonic oscillator.

In contrast, dephasing as related to energy/population relax-
ation is physically distinct from the latter dephasing mechanisms
in that it originates from nondiagonal (system-bath) interac-
tions, which drive the energy dissipation. It is therefore present
in all dissipative systems and determines the loss of phase
coherence at long times. The “hopping with complete dephas-
ing” version of TFS-SH, suggested here for reasons of
consistency, corresponds to an extreme version of introducing
dephasing due to population relaxation, where the mean time
length of adiabatic coherence is given by the average time
between nonadiabatic transitions, and coherence is not main-
tained across hopping between potential surfaces. It essentially
restricts TFS-SH to the limit of incoherent hopping between
adiabatic states, where the quantum state vector becomes a
purely auxiliary quantity for sampling the rate coefficients of a
Markovian Pauli master equation during coherent evolution
between hopping events. From the algorithmic point of view,
it is regarded as a minimal extension of Tully’s fewest switches
SH, which is expected to reproduce the emergence of Markovian
subdynamics and quantum detailed balance, provided that
sources of decoherence/dephasing other than population relax-
ation may be neglected. In special cases, as, e.g., for quantum
two-state systems,41 it may not even be needed. For the linearly
dampedanharmonicoscillator, both quantum/classical pure
dephasing and quantum decoherence effects, though possibly
weak, are also expected to be relevant.

Condensed phase vibrational energy relaxation (VER), for
which we have considered a simple model here, has only
recently become the subject of investigation using quantum/
classical dynamics methodology,16-18,33,34,67-69 the exception
being the quantum/classical Pauli master equation approach
using classical equilibrium force correlation functions55,56 (see
also references in ref 34). The latter has a long history in the
field of vibrational energy transfer, but differs from the quantum/
classical dynamics methods discussed here:56 Quantum and
classical equations of motion are not solved simultaneously.
Instead, classical dynamics is used first to generate the equi-
librium fluctuation forces, from which (approximate) quantum
transition rates are computed later on. Thus, the applicability
of surface hopping or mean field quantum/classical dynamics
methods to vibrational energy relaxation, and especially their
relation to the more traditional approaches, appear as yet largely
unexplored.56 Vibrational energy relaxation differs from the
electronically nonadiabatic case in that, for a single vibrational
DoF (“diatomic” VER), avoided level crossings do not appear,
and the nonadiabatic coupling region is typically delocalized
in the phase space of the classical degrees of freedom.

Our main results are that TFS-TSH, with appropriate
inclusion of dephasing, for the linearly damped oscillator (i)

reproduces quantum detailed balance, and (ii) gives Oxtoby’s
quantum prefactor (or correction factor)55,56 for the overall
average rate of energy relaxation. While the first property has
recently been obtained by Parandekar and Tully41 for a two-
level quantum system coupled to the first atom of a linear chain,
the second property has, to the best of our knowledge, not been
recognized before. It implies that fewest switches SH is, at least
for the case of dominantly linear dissipation, not superior to
the quantum/classical Pauli master equation approach to VER
mentioned above, while being computationally much more
demanding. In particular, it seems to reproduce one specific
quantum prefactor (for the bath force correlation spectrum) out
of a variety of possibilities.70-72 For our present model and
parameter situation, the prefactorf (ω0,T) for the overall average
rate of relaxation, defined through the relationwj qc ) f (ω0,T)-
wj cl, takes the values 0.895, 1.061, and 1.030 when using the
standard (Oxtoby), Schofield, and harmonic/Schofield correc-
tions, respectively (cf. ref 72), while the harmonic prefactor is
trivially f (ω0,T) ) 1. With our modified TFS-SH scheme, the
observed average rate of relaxationwjqc is definitely smaller than
wj cl ) 0.2 ps-1 (τqc > τcl) and is very well reproduced by the
standard correction,f (ω0,T) = 0.895.

A weakness of our present study is our inability to arrive, in
an analytically rigorous way, at the quantum/classical rate
expressions reproduced numerically. Rather, we arrived at these
rate expressions in a semianalytical, partially heuristic manner,
sofar limited to the linearly dampedharmonicoscillator. We
believe that this is an important issue for further investigation.
As stated by Berne and co-workers,56 “it remains an open
question, whether those mixed quantum-classical treatments”
(including TFS-SH) “agree with our mixed quantum-classical
results” (the Oxtoby prefactor) “in the regime where lowest order
perturbation theory is valid”. Importantly, our combined nu-
merical and analytical study suggests that the validity of
quantum detailed balance (with Oxtoby’s prefactor) for TFS-
TSH in the second-order perturbative regime requires, in
addition to frustrated hopping, the inclusion of some kind of
state vector “collapse” during single-trajectory hopping. In
general, it is expected that the TFS-SH transition rates not only
depend on whether decoherence/dephasing is introduced but also
depend on which relevant sources of dephasing are taken into
account. In this sense, the above question is still open, e.g., for
the linearly damped butanharmonicoscillator.

As to the issue of quantum decoherence,26,27 we stress once
more that our “hopping with complete dephasing” extension of
TFS-TSH is not meant to imply that the adiabatic working
basis of the SH scheme be regarded as a pointer basis (in the
sense that it dynamically minimizes the coherences via system-
bath entanglement), since the underlying mechanism invoked
is distinct from genuine quantum decoherence. While for
electronically nonadiabatic transitions the diabatic/adiabatic
alternative25 provides relevant candidates for the pointer basis,
for quantum nuclear or vibrational (harmonic or anharmonic)
motion coherent states (minimum-uncertainty wave packets) are
expected to play the role of pointer states.73-75 Interestingly,
coherent states of the quantum harmonic oscillator represent
the only type of quantum initial states for which the mean field
Ehrenfest method, for (dominantly) linear damping, gives
physically reasonable results.33,34 From a pragmatic point of
view, if only the populations of the subsystem density matrix
in a certain basis are considered relevant, it seems sufficient to
identify for the working basis chosen the most important source-
(s) of dephasing. For vibrational energy transfer in polyatomic
molecules intra- and intermolecular energy transfer pathways
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(and combinations thereof) come into play, and level degenera-
cies and avoided crossings due to intramolecular Fermi reso-
nances are expected. In such systems, the treatment of deco-
herence/dephasing may be crucial, and the present “hopping
with complete dephasing” scheme seems incomplete.

4. Conclusion

Tully’s fewest switches surface hopping (TFS-SH) method
has been applied to the linearly damped oscillator as a model
for condensed phase vibrational energy relaxation. In contrast
to the original scheme, dephasing in the adiabatic basis was
introduced by resetting the quantum state vector to the new
occupied vibrationally adiabatic state after each successful hop.
This procedure was motivated by the observed failure of Tully’s
TFS-TSH in reproducing an asymptotic quantum statistical
equilibrium for the subsystem oscillator, and was justified by a
variety of related arguments, including reference to the corre-
sponding Redfield master equation in the secular limit, and the
microscopic requirements for the emergence of Markovian
subdynamics and quantum detailed balance.

Using this “hopping with complete dephasing” scheme, it was
shown that fewest switches surface hopping gives a quantum
statistical asymptotic thermal equilibrium for the quantum
subsystem, where the so-called “frustrated hops” (“classically
forbidden transitions”) appear crucial for maintaining quantum
detailed balance. We observe that, for the linearly damped
harmonic oscillator, TFS-SH with dephasing predicts on overall
rate of energy relaxation which is very closely reproduced by
a quantum/classical Pauli master equation approach, with the
rate coefficients obtained via Oxtoby’s quantum prefactor.55,56

The same applies to the detailed pattern of population relaxation.
While we believe that the latter correspondence is an important
and, as to our knowledge, new finding, the mechanistic origin
is not yet completely clear to us. In particular, we were not
able to give a rigorous analytical proof, and the general
agreement with Oxtoby’s quantum/classical rate theory beyond
the linearly dampedharmonic oscillator appears uncertain.
However, a detailed comparison to the original TFS-SH scheme
using statistical theory suggests that dephasing due to population
relaxation (as implied by our apparent “collapse” procedure),
in addition to frustrated hopping, is indeed necessary for
obtaining quantum detailed balance in TFS-TSH simulations
of vibrational energy relaxation, while pure dephasing and
genuine quantum decoherence are irrelevant in the adiabatic
basis for the present model.

When the results obtained here using vibrationally adiabatic
surface hopping are compared to the mean field Ehrenfest (mfE)
method as applied to the same physical model, an interesting
dichotomy arises: While the (single-trajectory) mfE method,
when it works physically reasonably, predicts relaxation toward
a quasi-classical thermal equilibrium with the overall rate equal
to its classical mechanical expression,34 TFS-SH (with dephas-
ing) gives a quantum statistical equilibrium, but seemingly only
at the expense of shifting the rate of energy relaxation below
the classical value. Mean field Ehrenfest is a fully coherent
method, whereas surface hopping, even when the quantum
amplitudes are propagated coherently throughout, introduces
some element of incoherence by adding on top of the mechanical
equations of motion the feature of adiabatic population hopping,
resembling the stochastic “on-the-fly” realization of a quantum/
classical Pauli master equation for the “occupied” adiabatic state.

In fact, our “hopping with complete dephasing” scheme
corresponds to the extreme version of simulating incoherent
hopping between adiabatic states. The quantum state vector

propagated along individual quantum/classical trajectories then
becomes a purely auxiliary quantity. Coherences sampled along
trajectory segments merely provide information about transition
probabilities, but are discarded when hopping to a new adiabatic
surface.

Combining both coherent and incoherent dynamical aspects
together with quantum detailed balance in one universally
applicable (basis-independent) quantum/classical method seems
hard to achieve.
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