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Fewest Switches Adiabatic Surface Hopping As Applied to Vibrational Energy Relaxatioh
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In this contribution quantum/classical surface hopping methodology is applied to vibrational energy relaxation
of a quantum oscillator in a classical heat bath. The model of a linearly damped (harmonic) oscillator is
chosen which can be mapped onto the Brownian motion (Caldeaggett) Hamiltonian. In the simulations

Tully’s fewest switches surface hopping scheme is adopted with inclusion of dephasing in the adiabatic basis
using a simple decoherence algorithm. The results are compared to the predictions of a Redfield-type quantum
master equation modeling using the classical heat bath force correlation function as input. Thereby a link is
established between both types of quantum/classical approaches. Viewed from the latter perspective, surface
hopping with dephasing may be interpreted as “on-the-fly” stochastic realization of a quantum/classical Pauli
master equation.

1. Introduction on the system-environment interacti®’ Quantum decoher-
. . ence in a subsystem originates from genuine quantum system
Because of the complexity of systems in condensed IC)hasebath correlations and is thus a priori absent from ad hoc

chemical and biological physics, a fully quantum dynamical uantum/classical treatments. Decoherence effects have been
description of processes is out of reach for these systems. Wh”eiqntro duced by a number of résearcﬁév@:”” (see also the
classical molecular dynamics of nuclear motion provides a y

versatile tool for investigation of large chemical and bio- references in ref 4), to provide a remedy to the problem of
5 9a 1arge ct . unphysical coherence in the simplest quantum/classical methods.

molecular system’? many interesting situations require the A . ) .

. . ; The latter can be divided into two main categories, represented

inclusion of genuine quantum degrees of freedofimost by the mean field Ehrenfest (mf&)* and trajectory surface

notably in photochemistry and photobiolog$,or make the y J y

inclusion of quantum effects desirable for certain nuclear degreeshOppIng (SH, TSH) methods; respectively. In both schemes

of freedom (DoF), e.qg., for proton-transfer reactiddisn this the Schrainger (or _quantum L'OU\f"l:?) d%namwis of theh
scenario a “divide and conquer” strategy seems to be the mostquantum subsystem IS pro.pagate.d ully co erenty.under the
fruitful avenue, where a usually small subsystem of interest is mfluencg of a single classical trajgctory of thg e”V'FO””.‘e.”."
described quantum mechanically, while the majority of sup- a_ppr_oprl_ately sampled fromc_aclassmal orquas!-classmal initial
posedly less important DoF, the environment or “heat bath”, is distribution (independent trajectory approximation). The back-

. . . reaction on the classical dynamics, however, is treated differ-

treated by classical mechanics. The emerging methodology of ! .
- : . ently. In the mfE method, the classical trajectory evolves on a
mixed quantum/classical dynamics (QCMD) has been success-

. X ; . mean field potential energy surface derived from the time-
fully applied to electronically nonadiabatic proces$eésprotor’ dependent expectation value of the svstdvath interaction. In
and light atom (transfer) reactiof$?#and its origins date back P P Y '

the SH method, the trajectory always evolves on one of the
to the early days of quantum dynamisRecently, the . . ; . ) S
o various instantaneous adiabatic surfaces (the “occupied” state),
methodology has also been developed to study vibrational :
. - o 1g except for hops between surfaces accompanied by sudden
energy transfer in solutio¥:

. . . . momentum adjustments along the nonadi i ling vector
Despite the progress being made, the field still reflects the omentum adjustments along the nonadiabatic coupling vector,

influence of rather fundamental questions and issues. There isaccounting for quantum/classical energy conservation. The
. q . : probability of hopping events is evaluated from the nonadiabatic
as yet no universally accepted quantum/classical method ap-

plicable to arbitrary systems or processes of interest, This is coupling and the coherences in the adiabatic basis, and a fewest
perhaps best illustrated by the multitude of different schemes switches Monte Carlo hopping scheme is employed to maintain

adopted in the literature. While more traditional approaches maximal consistency of the ensemble averaged subsystem
P . : e al app density matrix populations and “occupied” state statistics.
propagate a time-dependent Salirger equation for the . : .
. . While mfE is a fully coherent QCMD method, it suffers from
quantum subsystem self-consistently coupled to the classical . . . -
: . 1920 the mean field backreaction which fails to reproduce the
dynamics of the environmef£1%-2more recent developments

. - - . expected asymptotic statistical mixture of states for the quantum
employ the density operator within a quantum/classical Liouville 53330 Thie i : ;
. 1-25 subsystend>3334This is precisely the quantum/classical cor-
equation framework!

At the heart of the quantum/classical dilemma is the notion relation problem which Tully's fewest switches TSH (TS

,35 i i i
of quantum open system dynamics and the emergent phenom-TSH)4 suggests to remedy by introducing hopping events

. between “occupied” adiabatic states, supposed to give the correct
enon of quantum decoherer®®e?8i.e., the decay of coherences P » SUPP g

. . . . . _branching ratios implied by an asymptotic statistical mixture.
of the subsystem density matrix in a certain state basis dependln%ﬁen hgwever a giscrep);ncy bgrwgen (or inconsistency of)

 Part of the special issue “tgen Troe Festschrift” ensemble averaged density matrix and “occupied” state popula-

*E-mail: gkaeb@gwdg.de. Telephone49 (0)551/201-1256. Fax+-49 tiqns is observed. This is commonly (_or most oﬁenly) associ_ated
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tions” 11 where the nonadiabatic coupling and adiabatic co- At this point, we add some remarks on the notions of
herences suggest hopping to an excited state, while there is notlecoherence and dephasing, to avoid confusion. As has already
enough kinetic energy available in the classical subsystem, sobecome apparent, we use the latter two terms interchangeably.
the hop must be rejected. There appears to be no rigorous wayWhile the term dephasing seems to most oftenly be associated
to handle this problem within a quantum/classical frame- With the loss of phase coherence between energy states (most
work, and different interpretations and strategies have beennotably in spectroscopy), leading for instance to decay of the
proposed;11:36-9 also in connection with mean field Ehren- displacement and momentum expectation values of a damped
fesfi42040and the decoherence isstié23%We suggest that the ~ Oscillator, the term decoherence, in its more general form,
problem of “frustrated hopping” is connected, in part, to the @PPlies to the decay of coherences from a subsystem density
absence of decoherence/dephasing from TSH: The quanturr{natr'x’ n whgtevgr basis. Some“mes the notion of dephasmg
subystem state vector (or density operator) is propagatedIS also used in this manner. Since we are rgferrmg, mainly, to
coherently throughout, even though hops between adiabaticdecohe.rence in the (ad|at_3at|c_) energy basis, it may be understo_od
surfaces occur. Thus, during single trajectory SH evolution, the as equivalent to dephasing in the above sense. Later, we wil

currently “occupied” adiabatic state may acquire an atssociatedneed to distinguish between different origins of dephasing,
ntly occup - S yacq . including pure dephasing (due to some type of random frequency
density matrix population significantly smaller than unity and

. . . modulation), dephasing due to energy/population relaxation
large coherences with other states (especially states of highe ) b g gy’pop

. o r(damping of oscillations), and genuine quantum decoherence
energy), as will be demonstrated. As a result, transition arising from quantum systerbath entanglemen#:2” Thereby,

probabilities may become large, while a large fraction of e geliperately subsume the distinct phenomenon of quantum
suggested hops must be rejected due to energy conservatiojecoherence under the more general heading of “decoherence/
I‘eStriCtionS. It seems hard to believe that thIS inconsistency iS dephasing" (“|OSS Of phase Coherence”)’ a|th0ugh th|s may not
simply removed by ensemble averaging, given the assumedseem acceptable to all readers, and the term decoherence, in its
validity of the independent trajectory approximation. However, more narrow sense, is even understood as quantum decoher-
as will be illustrated below, the statistics of “frustrated hopping” ence?627 A detailed discussion of decoherence/dephasing mech-
is also connected to quantum detailed baldfceg., the anisms in quantum/classical dynamics simulations will be given
statistical ratio of up and down transitions between energy states.in the Results.

Thus, it seems natural to expect that even in the most consistent Our paper is organized as follows. In section 2, fewest
TSH scheme some fraction of “frustrated hops” must remain, switches adiabatic surface hopping is briefly reviewed. The
so there is some truth in the phenomenon of rejected hopping_BI’OWﬂian motion model, used in the simulations, is introduced,

The suggested detailed balance related “frustrated hopping” and the second order Redfield master equation applied to this
brings us to our final introductory point, the question of model. In particular, the secular limit of the Redfield master

asymptotic thermal equilibrium for the quantum subsystem equation and its quantum_/classmal |mplementat!on form the_baS|s
for the analysis of trajectory surface hopping simulations

immersed in a classical heat bath. In a recent study, it has been

demonstrated that mean field Ehrenfest QCMD, applied to a dedsiﬂtreg,g:ﬁsfﬁaﬁlgﬁo& Vivnhe;sit-lr—]ugg; olré?éngLTﬁ:IS-:nm”e tr]eorgion
guantum oscillator interacting with a classical heat I5af, PPINg P b g

. . . . are compared. This section also examines different origins of
gives (when it works reasonably) at best a quasi-classical

. o : . . X dephasing as to their relevance for the model situation consid-
asymptoﬂc_thermal equ_|I|br|um. Thls_ can be rationalized interms o4 section 4 concludes.
of a classical dynamical correlation between quantum and
classical subsystems. The same type of asymptotic analysis is?- Theory
also of interest for SH, and one of our aims in the present work. 2.1. Fewest Switches Adiabatic Surface HoppingFor
While it is expected that TSH entails a quantum statistical completeness, we give here a short review of Tully’s fewest
equilibrium for the subsystem of interddtwe will also be switches SH (TFSSH)4°35 For a total Hamiltonian of the
concerned with the rate of approach to equilibrium. Moreover, general type
we will see that the maintenance of quantum detailed balance

in surface hopping simulations may depend on whether a H =Hs(a p) + V(g Q) + He(Q. P)
mechanism of dephasing (or decoherence in the energy basis) N @2 N
is invoked. Hs(a, p) = Z + V4(a)
Given our above criticism, we take a rather modest attitude p2
and apply fewest switches SH to a deceptively simple model A _ L
system, which nevertheless poses a considerable challenge to Hs(Q. P) ZZW\+ Ve(Q) @

surface hopping? a harmonic oscillator bilinearly coupled to a
heat bath of harmonic oscillators. To achieve consistency of whereQ = {Q;} andP = {P}, or collectivelyX = (Q, P), the
density matrix and “occupied” state populations already at the TSH quantum/classical equations of motion take the form
single-trajectory level, we introduce a simple decoherence q ]
igcc::rétgsnfwu'vx;]k;lch. basically ci)n5|sts of assomqtmg .Wlth each o W (t)O= — fI‘_L{HS + V[g; Q)]} W(t)O=

pping event a “collapse” of the vibrational wave i
packet onto the new “occupied” adiabatic state. In view of our _ I_|:| [q; Q)] W (1)
later discussion, this is, however, not to be understood in terms A S
of a measurement-like interaction between the quantum sub- . Hg(X)
system and its environment. Implicitly we assume that the Q(t) =T|sz(‘)
vibrationally nonadiabatic coupling is in the perturbative regime,
such that the adiabatic coherences should remain small and the F’(t) __ 8HB(X)| _ 3€m[Q]| )
adiabatic populations vary slowly. aQ X=X0 aQ =0
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where Hs and Ag denote the system and bath Hamiltonian, momentum is adjusted along the nonadiabatic coupling vector
respectively, and.[Q(t)] is the energy eigenvalue associated dmp, !t
with the currently occupied instantaneous adiabatic state,

Ada; Q)] Lxml QIC= enl QM) [xm{ QW] T Thus, the quantum d..
subsystem evolves coherently, while the classical trajectory of Pi=Pnto&n &m=—F7—= 9)
the environmental degrees of freedom (DoF) is confined to a Vi

single adiabatic potential energy surface. The time-dependent

Schralinger eq 2 can be integrated using any suitable baseswherePry and P, are the (mass-weighted) momentum vectors
and unitary propagation scheme. In the simulations presented aefore and after the hop, respectively, angl the unit vector
modified PICKAPACK algorithr® 45 was used. When the  alongdm, Equation 9, together with energy conservatiGn
quantum state vector is projected onto the adiabatic basis,enQ(t)] = Km + em[Q(1)], yields a quadratic equation far

an[ Q)] = B[ Q)] | Ws(t)[] the amplitude equations of motion ~ and thus

read

d Po= P (PuCn&n =y (Pr€n)” = 280 Q)] €,

pm a,[Q(M);t] = —iw [Q(t)] a,[Q(t);t] — (10)
Z{dmn[Q(t)]-Q(t)} a,[Q);tl (3) which poses the requiremerR ¢en)? = 2Aen Q(1)]; i.€., for
e en[Q(Y)] > em[Q(t)] enough kinetic energy alongin, must be

. ) . . . available, otherwise hopping to a higher energy state must be
where dn{Q(t)] is the nonadiabatic coupling vector with rejected. The latter case corresponds to the “frustrated hopping”

components situation mentioned above. For a successful hoptilsggn may
0 be chosen such as to minimize the momentum shift.
dnd Q] = B [QMIIV; % [QM]T Before closing this subsection, we mention that TASH
AT may be mapped onto a Markovian Pauli master equation for
ol QUIIV Hq[q, QI lxa[ QI the adiabatic state populatiopg(t)
exlQ(O)] — € [Q(V)]
A d
= —{dJQOn* PO = P03 Wont 3 PO Wom  (1D)
n=m n=m
dor Q)] =0 @

where the transition ratesm -, can be identified withpm—n-
Thus, the rate of change of the currently occupied adiabatic (t0t)Udt, i.e., wm—n iS the ensemble averaged rate of escape
state population becomes from statem to staten, sampled during a coherent evolution of
the quantum subsystem density matrix while the classical
d . environmental trajectory is confined to the adiabatic surface of
&pmn{Q(t);t] = —22 Re{d, {QM]- Q1) pnef Q)Y (5) statem. For reasons of consistency (possibly already on the
r=m single-trajectory level), during coherent samplindgnfn(t;0t)]
the adiabatic populatiopm{ Q(t);t] should remain close to unity
(or at least>0.5) and the adiabatic coherences small, such that
the nonadiabatic coupling may be considered as a perturba-
tion.
d Even if this is initially the case, immediately after successful
t (0t = — o Pmrl Q();t]] 0t hopping to a new state the population typically lags behind,
. the dominant population is stipm,{Q(t);t]. For a consistent
= +2 R d,,,JQ1)]-Q(t) p,{Q(1);t]} Ot (6) sampling of(pn—n(t;0t)Othe dominant population should now
be pn[Q(t);t]. This suggests resetting the state vector to
with 6t being the time increment used in the simulation (chosen [x:[Q(t)]Jduring hopping, i.e., an apparent “collapse” of the
suitably small), and the associated hopping probability coherent wave packet onto adiabatic stateThis line of
pm—n(t;0t) (probability of escape into stat® is calculated as reasoning is also consistent with a quantum master equation in
the secular limit® where the rate of (local) population relaxation
tn(t:O1) sets a lower bound to dephasing (see below). When fewest
m (7) switches TSH is interpreted and implemented in this way, it

may be viewed as an “on-the-fly” stochastic realization of a
In this way, fewest switches SH ensures that only escape event
from statem are sampled during coherent evolution of the
guantum subsystem. In every time step, a uniformly distributed
random numbeg €[0, 1] is generated, where the condition

with pmd Q();t] = an[Q(1);t]ai[Q(t);t]. In the fewest switches
implementatiofP the transition probabilitym—n(t;0t) out of state
m into staten is evaluated to

Prn(t:0t) = max{ 0,

Pauli master equation (eq 11), with the transition rates a priori
uinknown. The sampling of rate coefficients (rates of escape)
Wm-n by way of eq 7 starting from the respective pure adia-
batic statesm then corresponds to a flux-over-population

method?’
n1 n 2.2. Model Hamiltonian and Dissipative Subsystem Dy-
Py < E= Z‘p (t;01) (8) namics. In_ the present _study, we consider the S|mple system of
k; ok = ok a harmonic oscillator linearly perturbed by the interactia

= —qgF with a heat bath, wherE is the force excerted on the
suggests a hop to the new adiabatic stat@ order for the hop relevant subsystem by the many bath DoF. This situation may
to occur, energy conservation must be fulfilled, while the be mapped onto the model of one-dimensional motion in a
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potential Vs(q), bilinearly coupled to a bath of harmonic
oscillators

.~ P . P? wle g |
A="+V0+Y{—+—|0-—a|} @2
2 VT 215 5|0 o

known as the Brownian motion or Caldeirheggett
Hamiltonian?"~%0 It provides, for instance, the basis for a
rigorous microscopic formulation of the generalized Langevin
equation (GLEj85152

av, t
ds;q) — [ldsy(t—9) p(s) + OF(t) (13)

o =—

in classical and quantum dynamics, whex®) is the friction
kernel andF(t) a fluctuating force, with the statistical proper-
tieste53

BFM=0

hg,? ‘ .
C(t) = BFHIF(O)= Zj{ (R + 1) & 4 1y &7y
|

2

g
C,(t) = DF({)OF(0)= kT —|2005w|t = ukgTy(t) (14)
W)

where in the quantum casg= @faDis the mean occupation
number of thdth bath oscillator at thermal equilibrium.

For small systembath interaction/sg = —§3 g & a second-
order generalized quantum master equation may be obt&ined,
which in the limit of short bath correlation time (on the system’s
time scale) may be written in a Markovian (time local) Redfield-
type form#6.53.54

G070 = §lFs ps0] 510 A 0] ~ 8,70 A'D
1)

where the dissipatord = /3 dt C(t) gs(—t) and AT = s dt
C*(t) gs(—t) contain the system Heisenberg operaft)
propagated backward in time under the system HamiltoHian
By invoking the secular lim#:53the Redfield master equation
may be further simplified, where the populatigng(t) of system
energy eigenstatedisind0= ¢,|nl] are decoupled from the
coherencesomr(t) and evolve according to a Pauli master
equation (eq 11) with transition rates

2
[

- [ dto e (16)

m—n

The detailed balance relationship betwegn., andwp—.m is
embodied in the properties of the correlation spectfum

EHw) = [T dt ) e = u hwn(w, T) H(w)
E(—w)= [ dtC(t) e

= [""dt Cx(t) e ' = u hoo{n(w, T) + 1 7(w)
(17)

Kab

giving C(—w) = &C(+w). For the damped harmonic oscil-
lator only single-quantum transitions are allowed

Wnont1 = @ r]((UO) (I"I + 1)
Whon-1= @ {ﬁ(wo) + 1} n (18)

and the overall energy (occupation number) relaxation is
exponential with rate constamt= y(wo)/2, the half-sided cosine
transform of the friction kernel. For the Brownian motion model
(egs 12 and 13) quantum and classical rates of energy relaxation
are equalyw = W The evolution of coherences in the secular
limit is characterized by relaxation-induced dephasing and a
(usually small) frequency shift

d . 1
a pmn(t) = _l{wmn + 6wmr\} pmn(t) - ”L’_ pmn(t)
mn
1 1
— =D Wt D Wod (19)
Tmn 2 k=m k=n

Thus, the rates for local population (energy) relaxation define
a maximum time scale for dephasing (decoherence in the energy
basis). The case of adiabatic coherences is analoguous. This is
one of our mativations for introducing the simple decoherence
algorithm into TFS-SH, as mentioned in the previous sub-
section. Although we deal here with situations of weak
dissipative systembath coupling, the reasoning is more general
and also applies to weak vibronic interaction between potential
energy surfaces.

Before closing this subsection, we briefly discuss, for later
reference, one particular quantum/classical modeling approach
to vibrational energy relaxation within the framework of
Redfield theory. It exploits the fact that equilibrium quantum
time correlation functions have the propéftZ*(t) = C(—t),
and therefore can always be written as a sum of time-symmetric
and -antisymmetric contribution€(t) = C.(t) + C_(t) and
Cx(t) = C(t) — C-(1). The Fourier transforms of symmetric
and antisymmetric parts are relatedG(w) via

E.(@) =1+ ™)) € (0) = 51— "} Ew)
2 2
(20)
For general condensed phase situations, the quantum force
correlation function is unknown, which suggests making use
of its classical counterpart via the correspondefigét) <
Ce(t), i.e., invoking the high-temperature limit f@(t).33.55.56
The transition rates (eq 16) then read

Clond® 2
Wmn = "2 1 1 o

and for the damped harmonic oscillator

é(:I((")nn*) (2 1)

_ (n+1)2ksTy(wg)

Mt Dk, 1t o

2k T 37(600) _
hwg2n+1) 2 nn+ D
W _on KeTilwg) 2T P(wy) (M + n
T g + g0 hog2n+1) 2 (22)
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The overall decay of energy (mean occupation number) is T 'dia'baﬁé
therefore 02} o adiabatic 1
d M= —w, { [MO-n W —ZkBT W
— —W, — N Wee = W,
dt qc{ ((1)0)} qc hwo(2ﬁ+ 1) cl _§
(23) £
£
where the prefactorf(wo,T) = 1), relating Wy and Wy = ®
Y(wo)/2 throughWge = f (wo,T) We, arises from employing the
correspondenc€,(t) = Cy(t) in combination with quantum
detailed balance, eqs 17 and 20. As will be demonstrated below,
this is the result obtained from TFS'SH simulations, with . . . . . . .
inclusion of dephasing, based on the Brownian motion Hamil- 03 02 01 00 01 02 03
tonian. displacement / A
Figure 1. Initial guantum state in position spaatigbatic state). The
3. Results and Discussion corresponding adiabatic wave function is only slightly shifted in origin,

o . . due to bath initial conditions.
3.1. Model Parameterization and Simulations.For the

Brownian motion Hamiltonian, eq 12, applied to the damped
harmonic oscillator (HO) the coherent TFSH equations of
motion, eq 2, read

seeds) should be generated from the same (random) classical
bath initial condition. Moreover, an exhaustive sampling of SH
statistics for each given classical initial condition would require
d P enough trajectories such that each possible SH branching
— W)= — {Hgoy — qulQl(t)}PPS(t)D situationm — {n} at timet € [to, tmad iS Vvisited more than
dt h once. In practice, the difference between our present-TIFgH
5 protocol and the general scheme may be assumed to vanish,
A o1 19 .2 provided that the initial conditions of the classical bath force
Heon = har A+~ +5 — are sampled sufficiently densely. Our experience with running
@ several SH trajectories per classical initial condition, while
N 2 keeping the (sufficiently large) total number of trajectories fixed
PO = QO = —o" Q1) + 9 Gnal QY] (24) (reducing the number of classical initial conditions), seems to
In the simulations, an ohmic spectral density of bath oscilla- suggest that.th|s.|s Fhe case. Thus, the above more s!mple TFS
tor$3s7 SH protocol in pr|nC|.pIe dqes not reduce the computational effort
(total number of trajectories at assumed convergence). For the
gz present model, at least, it rather appears as a matter of
Iw) = T 8w — w) = uyw o @l (25) algorithmic convenience. In general, of course, it is necessary
ZZah to keep an eye on these matters.
The initial wave function has been chosen to be an eigenstate
with exponential cutoff has been assumed, where the force |ng0= |500of Hs = hwoh (diabatic state), which differs very
correlation spectruma{ = 0) is given by little from the corresponding adiabatic state (Figure 1), and the

R . initial state of each bath oscillator is chosen from
C(w) = 2h J(w) A(w, T) = 2uy hoi(w, T) e

. P 2
Ca) = 2T D gy Te™  @6)  plQ,P) = Z‘lexn{ S ‘”—'(Q. - w%m@) ] @)
|

For the system oscillator a harmonic frequencywegRr = 250
cm ! has been chosen, and the bath spectral density adjusted-€. mean field correlatet instead offactorized quantum/
such tha(wo)/2 = 0.2 pst (y = 2.0 ps’, w27 = 108.574 cIaSS|_caI |_n|_t|_al cond_lt_lons. Thereby, pr(_)blems arising from
cmY), and discretized using 2000 classical oscillators in the factorized initial condition®->8are avoided in general, although
range 3-10 we. The choice of a rather |0W_frequency System for the pl’esent Special case of a damped HO, with diabatic initial
oscillator helps avoiding small integration steps, while classical state,[dld = 0.
and quantum equilibrium statistics are still distinguishable. The heat capacit@y = 2000 of the classical bath ensures
An ensemble of 1000 independent quantum/classical non-that the rise of bath temperature is kept below 1 K. Also, by
equilibrium trajectories has been generated, starting from a meanchoosing a suitably large heat bath, it is made sure that
energy offfild = 5 vibrational quanta and a classical canonical recurrences of the friction kerne(t) (eqs 13 and 14) do not
distribution of bath initial conditions al = 300 K, in the  show up within the time-window considered, and the dynamics
presence of the quantum subsystem (see below). Each trajectorpf the quantum subsystem appears as irreversible.
was initialized with its own random seed with respect to the  The coherent quantum/classical equations of motion (eqs 2
selection of bath oscillator initial conditions and the surface and 24) were solved numerically using a symplectic quantum/
hopping algorithm, and run for up to 15 ps. For each random classical symmetric split propagator as described elsewhere,
initial state of the heat bath, only a single sequence of surfaceusing a combination dfls (Hse) eigenstate and position space
hops was performed, instead of trying to converge both the (sinc-DVR) representations. In the case of rejected hops, instead
surface hopping statistics for every single bath initial condition of reversing the classical momenta along the nonadiabatic
and the canonical sampling of the latter. We note that this may coupling vecto¥® we have chosen to continue the coherent
be considered a severe deviation from the F58l protocol, guantum/classical propagation as if no hop had been sug-
where a bunch of different SH trajectories (with different random gested-1.37:38
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Figure 2. Single trajectory time evolution of the occupied adiabatic

state m(t) (adiabatic occupation number) and the mean adiabatic 5
occupation numbelh,dy for (a) Tully’s original and (b) our modified [N —-— standard deviation
TES-TSH. ) N e Q/C Pauli ME
% Ar N\ e mean thermal occupation
3.2. Simulation Results. 3.2.1. Energy RelaxationIn -]
Figures 2 and 3 the single-trajectory and ensemble-averagedg 3l

energy relaxation behavior is illustrated for both the original §'
TFS-SH scheme (no dephasing) and our modified version §
including dephasing (decoherence in the adiabatic energy basis).g 2}
The performance of Tully’s original scheme for vibrational @
energy relaxation, in particular its failure to reproduce an

asymptotic quantum statistical equilibrium for the subsystem 1
oscillator, motivates our introduction of decoherence. 4

For the sake of clarity and definiteness, we distinguish ) L P P P P S S—
between the expectation valli = [W(t)|Aad Ws(t) Dof the 0 2 4 6 8 10 12 14
number operatofag = Aad Q(t)] (in the adiabatic basis, see eq time / ps

31 below) and the ass_.omated elgenvarmec mr_1|naq| ml:]_where Figure 3. Ensemble averaged time evolution of mean occupied state

ImC= [zx[Q(t)][is an instantaneous adiabatic vibrational state ang mean occupation number: (a) for the original T8, compared

of the linearly perturbed quantum harmonic oscillator (specif- to the quasi-classical PME and quantum PME predictions; (b) for our

ically, the occupied state), and the adiabatic state ingex modified TFS-SH, compared to the quantum/classical PME and

corresponds to the vibrationally adiabatic quantum number, i.e., quantum PME predictions. (c) Ensemble averaged time evolution of

the number of energy quanta (occupation number) of the mean occupied state and standard_ deviation, fo_r our modifie_d—TFS

adiabatically displaced harmonic oscillator (see eq 31 below). SH: compared to the quantum/classical PME prediction. Numerical data
g . . ) points with error bars serve to indicate the respective overall statistical

For Tully’s original TFS-SH scheme, in Figure 2a the npcertainties ¢10%).

evolution of the assigned occupied adiabatic state |, m]

along a single TSH trajectory is shown and compared to the amplitudes the classical heat bath tends to drive the quantum

mean occupation numbé&i,qdin the adiabatic basis (the shifted subsystem to a higher mean ener@ ), a behavior which is

HO basis), as calculated from the quantum amplitudes. As is similar to mean field Ehrenfest dynamics starting from an

clearly visible, due to fully coherent propagation of quantum (excited) energy eigenstate34In particular, the mean occupa-
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tion number.hever falls below its value at time zero. This  time (rq = W' = 5 ps). The only way of arriving at an

is a general result, which is due to the quantum number asymptotic quantum statistical thermal equilibrium would require
dependence of the nonadiabatic coupling vector, whigrgr1 the assumption of a nonexponential decay of the average energy
O ~vm+1 anddmm-1 O Vmin the present case (see the section (occupation number), including relaxation time(s) much larger
below on a statistical treatment). In contrast, the occupied statethanzg, a rather unphysical assumption for a linearly damped
index m seems to evolve toward states of lower energy, as harmonic oscillator.

expected for a subsystem coupled to a thermal reservoir. As a  Qualitatively, the energy relaxation behavior of the damped
result, ad = m for all imes. The large discrepancy between oscillator, subject to Tully's TFSSH scheme, may be rational-

m and [, 1> m implies that, except at = 0, the occupied  ized as follows: The quantum amplitudes, and thus the adiabatic
statem is—for almost all times-not the dominant state in the  populations and coherences, along a single quantum/classical
expansion of the quantum state vectds(t)lJ It also implies  trajectory evolve fully coherently from the quantum initial state,
that the quantum coherencgsq(t) = am(t)a(t) involving the and the influence of the classical environmental forces tends to
currently occupied adiabatic stateare particularly large for  drive the quantum “reference” staf@#s(t)(jto a higher mean
higher excited states > mand thus favor transitions to these energyhwofiadd (cf. Figures 2a and 3a). As discussed above,
energy levels, provided enough energy is available in the this implies that the “reference” state, i.e., the adiabatic

classical subsystem. Transitions to lower levelss m are populations and coherences, from which the transition prob-
possible only to the extent that the respective states are containecbilities are determined according to egs 6 and 7, unduely favors
in the expansion of@Wg(t)C transitions to higher adiabatic energy levels, even though the

Upon ensemble averaging the energy relaxation behavior asquantum/classical energy conservation (eq 10) provides an
shown in Figure 3a is obtained. Agaiffi.d]> [Cas in the overall “thermodynamic cutoff” for the latter type of transitions,
single-trajectory case. While the mean occupied adiabatic statesuch that transitions to lower energy states win on average. The

(Csmoothly relaxes toward lower energitsomn(in fact question, why this should specifically lead to a quasi-classical
exponentially to a good approximation), the mean occupation thermal equilibrium for(in[] must be left open at this point.
numberh,{Jevolves toward higher energiggoMadd > Awo- However, the ensemble averaged energy relaxation toward

Madd. The latter behavior again very closely resembles the Awole = keT > hwol(wo, T) with the decay timerq is
results obtained with the mean field Ehrenfest scheme, whenqualitatively consistent with the above arguments.
starting from an excited energy eigenstétesherefiwoiii] — Obviously, something is going wrong with Tully’s original
hwolfld + keT is obtained. A detailed analysis is skipped here, fewest switches scheme when applied to the simple problem of
because the evolution a@fi,4lis not of physical relevance (at a damped quantum oscillator in a classical heat bath. The
least not explicitly). In Figure 3a is also shown the decay of ensemble averaged mean enefigyil above the zero point
mean occupation number as predicted by a quantum Pauli mastelevel tends to come out too large, as compared to the expected
equation (Pauli ME, PME) with average rate of relaxatios relaxation toward a quantum statistical equilibrium, and the
Waqu = We = (wo)/2 (cf. eq 18). Obviously, the latter decay origins of this behavior can be identified already at the single-
curve falls systematically below the numerical data for the mean trajectory level. As implicitly evident from Figures 2a and 3a,
occupied statéinl The same is also true for the decay curve a large discrepancy is observed between the adiabatic energy
predicted by a quantum/classical PME (eq 23) Witk W < level populations obtained from the quantum amplitudes and
Wg. Interestingly, the best agreement with the numerical data the ones obtained from the occupied state assignment. Yet the
for Inldis observed, when a quasi-classical PME is used, where adiabatic level populations and coherences derived from the
W = Wy = 0.2 ps! (see the model parametrization in section coherently evolving quantum amplitudes are used to obtain the
3.1) and the mean thermal occupation number set equal to itshopping probabilities for the stochastic evolution of the occupied
value in the classical limifi(wo) = Nei(wo) = (Bhwo)~L. To aid adiabatic staten(t).
the reader in judging the statistical significance of this result, a  \while it is true that the evolution of coherences and
numerical data point is included with an error bar indicating populations should reflect non-Markovian effects to some extent,
the overall statistical uncertainty<(0%). which the TFS-SH coherences undoubtedly do, it is also true
The results reported and analyzed sofar for the originaHTFS  that the dissipative subsystem should approach a Markovian
SH scheme indicate, that fewest switches surface hoppinglimit at longer times. In the absence of so-called “pure
applied to the case of a damped oscillator apparently fails to dephasing”, according to Redfield theory (eqgs 15, 16, and 19),
reproduce a quantum statistical asymptotic thermal equilibrium the phase coherence between energy states on average vanishes
for the quantum subsystem, in contrast to the recent suggestioron the time scale of local population relaxation. On the single-
by Parandekar and Tuliybased on the analysis of a two-level trajectory level dephasing may either be introduced as a
quantum subsystem. Detailed arguments relating our findings continuous process(using the density matrix) or as a discon-
to those of Parandekar and Tully will be given later, when tinuous, stochastic process (as adopted here). The simplest way
discussing our numerical evidence on the issue of quantumof implementing the above connection between dephasing and
thermal equilibrium. While it would be inappropriate to claim local population relaxation on the single-trajectory level is to
that our results obtained for the damped oscillator case representiscard the adiabatic coherences after each successful hop, by
a generic property of the TFSSH method, the prediction of a  resetting the state vector to the new assigned adiabatic state.
quantum statistical thermal equilibrium can in our view be The resultant “collapse” of the coherently evolving quantum
definitely ruled out for the model situation considered here. state vector onto the new occupied state seems to imply an
Although the length of our current simulations is not sufficient effective measurement-like interaction between the quantum
to arrive at a completely thermalized state of the quantum subsystem and its (classical) surroundings (i.e., quantum deco-
subsystem, it would appear strange to expect the numericalherence). Objections against this view may, from a more
decay curve fofiniJ deviating strongly from the prediction of  microscopic perspective, be answered as follows: The original
the quasi-classical Pauli ME at later times, when it so accurately TFS-TSH method includes non-Markovian effects in the
followed it up to three times the parametrized energy relaxation evolution of the quantum subsystem due to the fact that the



3204 J. Phys. Chem. A, Vol. 110, No. 9, 2006 Kab

quantum state vector is propagated coherently throughout alongg ¢4 oS * ~ * ~ + ~ * ~ ' ~ ' '
each single quantum/classical trajectory. However, after some @ —m=5

time interval (defined essentially by the correlation time of the [ -—-m=3

classical forcé-(t), 7. ~ 100fsin the present case) the evolution 0.8 sreem=1 ) .
of the quantum distributiofipm(t)} should become independent © Q/C Pauli ME |
of its history. This, in turn, implies that the transition ratég.-,

only depend om andn (and the spectral density of bath forces).
In order for this to be true, the ensemble averaged rates in the
Markovian limit have to be expressedag .n = Dm—n(t;0t) Y

ot, where the subscriph now denotes not only constraining
the classical dynamics to tha th adiabatic potential energy
surface. It also means that the single-trajectory adiabatic 8§ '
populations and coherences, determining the hopping prob-% [ ¢ 240.0% COOTOT- |
abilities of eq 7 and thereby the average hopping rates, ®
effectively evolve from a situation wheremn{tho) =
am(thop)@i(thop) =~ 1, i.€., the rate of escape from statéo state

nin the Markovian limit is the same as i was the initially Figure 4. Ensemble averaged time evolution of adiabatic energy level
prepared adiabatic state. This approach to the Markovian pogpulations for quantum ngmbem;= 5 (initially occupied), 3, an%yl,

limit should be reflected somehow in the single-trajectory compared to the quantum/classical PME prediction (modified-TES
implementation of TFSSH, be it smooth in time or sudden.  sh).

On a sufficiently coarse-grained time scale, the smooth transition
to the Markovian limit may be replaced by a sudden jump to oscillator with linear dissipation (i) gives a quantum statistical
the respective new adiabatic state on the single-trajectory level;asymptotic thermal equilibrium for the quantum subsystem, and
i.e., we arrive at the “collapse” or “hopping with complete (i) is equivalent to a (particular) quantum/classical PME
dephasing” implementation of TFS'SH as suggested above, treatment as traditionally employed in the field of vibrational
which is, however, physically distinct from quantum decoher- energy relaxatiof®56It also underscores, that quantum statistical
ence (see our later discussion). What follows is an investigation dynamical information should always be derived from the
of this modified TFS-SH scheme. statistics of assigned adiabatic states'? Comparison of

In Figure 2b, for our TFSTSH with dephasing, the evolution  numerical results to the quantum PME predictign=¢ Wq, =
of the assigned occupied adiabatic state= [in|fi, mCalong a W), on the other hand, shows that the latter decay curve falls
single TSH trajectory is shown and compared to the mean systematically below the numerical one. Again, a numerical data
adiabatic occupation numbéh, 1= [Wg(t)|Rad WPs(t)] As is point is included with an error bar indicating the overall
clearly visible, during coherent evolution between quantum statistical uncertainty<10%) and pointing out the statistical
transitions the classical heat bath tends to drive the quantumsignificance of our findings.

atic level population (bin

time / ps

subsystem to a higher mean enerd@i.{J, again a behavior Figure 3c contains, in addition to the first moméiri) also
which is similar to mean field Ehrenfest dynamics starting from e standard deviation, = P i, Again, the agree-

an (excited) energy eigenstdfe’* The discrepancy between ment with the quantum/classical PME is satisfactory.
and(h.d_becomes particularly pronounced wher= 0, where Besides the analysis given sofar, we observe that the

only the thermally activated channet-Q is possible, and  rgjaxation ofia{very accurately follows the exponential decay
enough Kinetic energy must be available along the nonadiabatic|gy of eq 23 withw = Wy andn = Ny = (Bhwo)?, i.e.,
coupling vectodoy, in order for the hop to occur. The coherent  rejaxation toward a quasi-classical thermal equilibrium, the same
time interval (waiting time) irm = 0 is therefore comparatively  type of relaxation behavior exhibited by the mean occupied state
long. Althoughfad = m, the evolution offi.d Closely follows mnOfor Tully’s original TFS-TSH (Figure 3a). This is not
the assigned adiabatic state indexthe “occupied” state), due  shown here but reserved for further consideration.
to our procedure of resetting the wave packet to the new |n the following, we refer to our modified version of Tully’s
adiabatic state (and the adiabatic coherences to zero) im-fewest switches method, except when indicated otherwise.
mediately after a transitiom—n, such that the coherent cycle 3.2.2. Population Relaxation.A more detailed view is
then starts again withiflad = n and p, = 1. However, by provided by the population dynamics (Figure 4) as derived from
introducing dephasing in the adiabatic basis, as implementedne statistics of assigned adiabatic states (“binned” populations).
here, coherence effects are not maintained across '[ransition%ong a single TES TSH trajectory, probabilities are assigned
between adiabatic states. Rather, it is ensured that the transitiorhspm(t) = 1 (occupied state) ang(t) = 0 (n = m), respectively.
rates wm-n originating from statem are always the same,  Figure 4 contains the ensemble averaged datarfer 5, 3,
independent of the initializationng) and the history of the  and 1 as compared to the quantum/classical PME prediction.
evolving ensembl¢ pm(t)} . Especially the decay of higher excited states= 5 and 3) is
Figure 3b, for our modified TFSSH scheme, shows the very well reproduced, while for the first excited state, which is
ensemble averaged data fanJand [adl) Again, [had 1> [EnC significantly populated at thermal equilibrium, it is more difficult
as in the single-trajectory case. The deviation becomes particu-to average out thermal fluctuations. Thus, we have strong
larly large at low energies close to thermal equilibrium, for arguments for the equivalence between both types of quantum/
reasons that have been discussed above. Also shown is the decaglassical approaches, at least within the limits of numerical
of mean occupation number as predicted by a quantum/classicabccuracy and finite ensemble size. This equivalence is, in our
PME, egs 2123, withw = Wy < Wg. In the present case, view, by no means a priori self-evident and will be addressed
We = 0.2 pstandWy. = 0.895x 0.2 ps'. The agreement of  below by statistical theory based on the FFSH scheme.
the Q/C PME with [in0J already demonstrates, that fewest Furthermore, the approach to quantum statistical equilibrium
switches TSH (including dephasing) applied to a harmonic of the quantum subsystem is numerically demonstrated by
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16 ———m—w———————1— dephasing), egs 2, 6, 7, 10, and 24, and the underlying model

% Fa ——N_, from binned populations 1 Hamiltonian, eq 12. For the harmonic oscillator with linear
E, 14 3, - — -N_ (quasi-canonical) 7 damping, the vibrationally adiabatic states are again (displaced)
3 12 [ 3 eff . . HO eigenfunctions, centered at the origin
4 B » © Q/C Pauli ME (populations) .
2 10 I ‘o, o Q/C Pauli ME (quasi-canonical) 1 F(t)
8 [ b ] 0[Q()] = /«F —§=00[Q()] + g [QM)] (30)
T 8 0
@
-g 6 with displacemendd(t) andF(t) = 319/Qi(t). The adiabatic states
3 S lxm[Q(t)]Dare eigenstates dfiy[q;Q(t)], eqs 2 and 24, which
o 4 may be rewritten as
3 2 )
(] a2
= I ] A uwq "
o [P SR TP TP T T TP T Hq[q!Q(t)] =—t— q2 —q F(t)

0 2u 2

0 2 4 6 8 10 12 14
A2 2 2
time / ps _Pp° HDo o HPo 2

Figure 5. Time evolution of the nonequilibrium entrop§(t) = In

N(t) (in terms of an effective number of occupied energy levels) as 2
calculated from the adiabatic energy level populations and as obtained _ ~ 1) H@g 2

from the mean occupied adiabatic state (assuming a quasi-canonical - th A QO] + 2 2 (@) (31)
distrit_)L_Jtion), compared to the quantum/classical PME prediction
(modified TFS-SH). And the eigenvalues are

exploiting the property that the populations of harmonic

2
oscillator eigenstates at thermal equilibrium €. [Q()] = hwo{m+ %} _ #az)o (qo(t))2 (32)
=)Ll 28)
Pn n+1/n+1 The matrix elementgy{Q(t)] in the adiabatic basis are easily

evaluated to
are solely determined by the mean thermal occupation number
N(wo, T).5° The nonequilibrium distributio{ pn(t)} may be Ol Q)] =

globally characterized via the information entr&hsp =
Gl QU+ /5 (VN Omna TV + Lornia} (33)

and determine the classical equations of motion, eq 24, via

S(t) = zpm(t) In pm(t) =In Nef‘f(t)

Scanonica(t) = (Emm‘*‘ 1) In(l]nl;H— 1) - mnmlnmnm (29)
P(t) = —0,"Q(t) + 9a[Q(®)] (34)

where Sanonica(t) corresponds to a (nonequilibrium) canonical

d|s_tr|but|on, to which a temperature may be_ assigned,Nud as well as the nonadiabatic coupling vector, with components
(t) is an effective number of uniformly occupied energy leéls. (eq 4)

Figure 5 shows tha#(t) (Ner(t)), derived from binned adiabatic

populations, converges t8&.anonicat) (Ncanonica(t)), as derived 9 G JQ)]
from the mean occupied staténi] and both are in very d 1Q()] = 2 MR —dY1Q(1)] (35)
satisfactory agreement with the quantum/classical Pauli master Awo(m —n)

equation. Although at= 15 ps the adiabatic populations have

not yet relaxed t@ = Tpan (300 K), the distribution has reached ~ which are time-independent in the present case (eqn33,n).
a quasi-thermal formT( > Tpay). It is well-known and easy to ~ The nonadiabatic coupling is, therefore, simply given by
show that a quasi-canonical distribution analoguous to eq 28,

with R(wo, T) replaced byl is stable in its analytical form . Omn . .
subject to a Pauli master equation with the detailed-balanced dnd QM]-Q(t) = P F), FO= Zgﬂ(t) (36)
rate coefficients given by eqs 18 or 22, such that only the mean Omn

occupation numbéiiljchanges according to the linear rate law, _ ) o )

eq 23. Thus, the fact, that the populations of adiabatic energy Equations 33, 35, and 36 imply that the vibrationally nonadia-

levels have arrived at a (still nonequilibrium) quasi-canonical batic coupling is delocalized in the phase space (position space)

form well beforet = 15 ps, reflecting the detailed balance Of the classical environmental degrees of freedom.

property of our numerical TFSTSH rate coefficients The adiabatic coherences evolving freph{t) = pma{t;Q(1)]

[Prmn(t;0t)Z0t, provides in our view strong support for the = 1 (t— 0) at short times are

argument that the distribution will continue in following the . _ , .

evolution toward a quantum statistical thermal equilibrium as o (t) = — ﬁ) dt e 'm0 g Q) pt) — Pk}

predicted by the quantum/classical PME. 37
3.2.3. Statistical Theory: TFS—TSH Quantum/Classical

Master Equation. In the following, statistical theory is applied  wheret = thop, = 0 is understood as the time origin of a coherent

in an attempt to derive the hopping rates, of the Pauli propagation cycle. Immediately after a surface hbp (thop),

master equation, eq 11, from the TFSH scheme (with due to our “hopping with complete dephasing” ansatz, we have



3206 J. Phys. Chem. A, Vol. 110, No. 9, 2006 Kab

pnn(t) = omn, Wherem s the occupied state. Insertion intoeq5 7 =1t — t', and the second line follows from the assumption
yields the (single-trajectory) rate equation (cf. eqs 6 and 7)  p(Q,P;t) = p(Q,P;0) = pe(Q,P). The latter corresponds to the
standard assumption made in situations where a small system

d tn(t01) is coupled to a large but finite heat reservoir: Although the
— P = — z— relevant subsystem perturbs the environment causing it to
dt Ot deviate from its initial equilibrium, this deviation may be
o _ assumed irrelevant as long as the heat bath is large enough. In
- an{ “im-n(®) Pl ®) = Knnn(®) £ (0} the present case of a nonergodic reservoir this assumption may
, still be used, because the exchange of energy quanta is
Omnl ™ ot e i gt o N distributed over a large number of bath DoF, according to the
Kmn(t) = . = zﬂ,dt {e om0 4 gfomTOY E)F(Y) prescription for the momentum adjustment in FFSH (eqgs 9
(homy) (38) and 10) and the nature of systetath interaction (eqs 35 and
36).
to second order in the nonadiabatic coupling (systeath Before evaluating eq 42, we need to consider the properties
interaction), in the Markovian approximatiosm{t') = pmn(t). of F(t). First, the force~(t) = },0/Qi(t) is obtained by integrating

The apparent symmetry in the single-trajectory rate coefficients, the classical equations of motion (eq 3430
kn—m() = xkm—n(t) (€q 38), is broken by the requirement of

quantum/classical energy conservatisp,+ e,[Q(t)] = Km + F(t) = Fg(t) — f;dsﬂ?(t —9) QoS
em[Q(t)], during hopping (see below). Ensemble averaging over
the classical heat bath variables thus gives the rate coefficients P(0) .
Fo(t) = Zgl Q(0) coswt + —sinwt (43)
il _.(t;01) @
Winn(t) = I [&y-n(OD] , o
Ot Prmnft) whereFg(t) is a random force originating from the free bath
2 initial conditions, andy(t) is the friction kernel of the GLE,
_ e ft dr{e om0 4 eqs 13 and 14. The force time-derivativé), as obtained from
2J0 ial i ion, i
(ho eq 43 and partial integration, is
Honm(t—t) ¢ =
I EOROG L B9 py =) — fldsuit— 9 6
of a quantum/classical Pauli master equation (eq 11), where the . t .
subscriptm—n indicates sampling in the adiabatic statend = ok - ﬁ)dsm/(t ~9) Q9
observing the energy conservation constraintiforn. If F(t) 9 P,(0)
can be considered a stationary random proceg$)F(t")0= _ _ .
[F(t — t')F(0)] the transition ratest (= «) may be written in OF(®) = Zg' Q(0) S 9o(0) | cosat + Tsm ot
the Golden Rule form @ '
) = Fg(t) — uy(1)g,(0) (44)
_ |qm”| +oo — i .
Winn = (hoo n)z ffoo dr e [ (2)F(O)h—-n usingy(t = 0) = 0. oF(t) is now a random force with shifted
m bath initial conditions'®52analoguous to the one appearing in
q P _ the GLE, eq 13. Its statistical properties are given by eq 14.
=—" [dr e F()F(O)},., (40) More specifically, this applies only in the absence of the TFS
A2 TSH energy conservation restrictions as expressed by eqs 41

L . and 42 6 < m). The force time-derivative of eq 44 is
using [F(7)F(0)[= —IF(r)F(0)LJ Note, however, that the bath  nonstationary in general, it is coupled to its own history through

oscillators are coupled to each other (eq 34) throggt) (eq a0(s) = F(9)/uwe? Note, however, that limo F(t) = SF(t).

30). The implications are discussed below. o Since the memory in the time-evolution Bft) is related to
In fewest switches TSH, the bath force (time-derivative) (the time-derivative of) the friction kernel, which in turn

correlation function is implicitly sampled subject to the con-  expresses the weak time-retarded frictional coupling of the
straint (cf. eq 10) quantum subsystem to its (classical) environment, it may be
assumed that the dominant contributionR€) is oF(t). The

(F(t)? influence of the bilinear coupling between bath oscillators (cf
. B .
(Pr€n)” = =z 2hon, = 2hogn—m) - (41) eq 34) may be taken into account perturbatively. To second
Zglz order, we have

. . 1 t .

F(t) = 0F(t) — — [ dsy(t — s) OF(S 45
whereemn = dmy/didmn = 94/ 3,97 The bath correlation ® ® a)OZJ; 7(t= 9 oF( (45)
function appearing in eq 39 may then be expressed as

Here, we restrict ourselfs to zeroth ordé(t) = SF(t), and argue

E(DFE(t = ('dPd P:t) F(OF(t)O[x(t that the coupling between oscillators mainly serves to maintain
OFC) ‘f Q P(Q P FOFT)OI()] thermal equilibrium between the bath DoF.
~ fdeQ PedQ.P) F(0)F(—7)®[x(0)] Equation 42 is difficult to evaluate analytically in general,
! (42) except for downward transitions (< m), where[F(t)F(t") 0=

. BFt)OF(t)0= —ukeTy(t — t). In particular, it is not at all
where®[x(t)] = O[(F(1))? — 2hwnmy.19?] is the step function, evident that the step functio®[(F(t))? — 2hwnmy97], intro-
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duced in eq 42 to account for quantum/classical energy equation (eq 15) in the secular limit. In particular, in the absence
conservation (eqgs 10 and 41), should generally yield the quantumof pure dephasing the process of population relaxation (energy
detailed balance propeniy—/Wn—m = € #mfor the transition relaxation) gives rise to a loss of phase coherence between
rateswmn of eq 40. Here, we simply bypass this problem and energy levels (eq 19). Here we discuss dephasing/decoherence
assumethat the energy conservation constraint introduces in the context of quantum/classical dynamics from a broader
(roughly) a factor of & for n > m (upward transitions), perspective, using more precise terminology, by focusing
and unity forn < m. The (approximate) validity of quantum on the poineering approach of Rossky and co-
detailed balance has been demonstrated numerically above (seworkers?9:30.31.62
also the analysis below, based on the fraction of rejected hops). As noted by Rossk§! the origins of dephasing (in quantum/
Because of the ad hoc inclusion of quantum/classical energy classical dynamics) basically include two components. The first
conservation, the equilibrium densips(Q,P) in eq 42, and is due to fluctuations of the energy levels involved in transitions,
thus the force correlation spectrum (eq 40), should be rescaledi.e., due to the effect of a classical-like random external field
by the average fraction, (& e #"»)/2 for the damped HO, of  coupled “diagonally” to the energy states of the quantum
successful escape events from statéto statesn = m + 1. subsystem. This component naturally appears as pure dephasing
Thus, for the linearly damped harmonic oscillator we obtain in a quantum/classical setting, as a result of the adiabatic energy
the transition rates statese[Q(t)] being parametrically dependent on the classical
coordinates. Averaging over classical initial conditions then

m+1 a 2@ Phwo leads to a fading out of the statistically superposed individual
Wi—mt1 = W Ccl(wo)m = phase factors &/ Q)] as, for example, in Kubo’s stochastic
0 1+e . theory of line shape via random frequency modulaffbim the
2k T V(wg) e present context, this requires that the adiabatic energy levels
hog2n+1) 2 nm+1) oM = horQ()] are shifted differently, and therefore
relative to one another, by the motion of classical external
W —_m & (@) 2 - degrees of freedom. The phase factorg'@ QM1 primarily
MMl Duha, Y Y 4 g Pheo reflecting the evolution of coherences, indirectly affect the
kT P(wy) guantum/classical transition rates—, (cf. eqs 3740). Note

(n+ 1)m (46) that dephasing related to energy dissipation/population relaxation
(lifetime broadening of energy levels), as introduced in this
paper, may intuitively also be grouped into this category. It is,
however, physically distinct from pure dephasing, since it
originates from a “nondiagonal” coupling (to the environment),
from the TFS-TSH scheme (eqs-210 and 24) and, impor-  causing the subsystem to change state. In a quantum trajectory
tantly, our dephasing procedure (implicit in eqs-3/0). This picture, these state changes (transitions) occur at random times
is a remarkable result. Although we have obtained it via a rather distributed according to the microscopic transition rates, thereby
bold heuristic assumption regarding the issue of detailed balance nterrupting the coherent evolution of the subsystem and leading
this result is expected to hold (for the damped harmonic to dephasing of an ensemble of subsystems. In contrast to pure
oscillator) whenever the systerbath interaction potential is  dephasing, dephasing due to population relaxation is not
dominated by the linear term@F(t), where the bath forcE(t) naturally included in single-trajectory quantum/classical dynam-
may be an arbitrary function of the positions of environmental ics methods and must be introduced in an ad hoc manner (if
DoF, in other words, whenever the phenomenological ap- considered important). As will become apparent below, the
plicability of a generalized Langevin equation (eq 13) may be quantum/classical pure dephasing effects, although being an
assumed. In particular, if the above rate theory applies to ensemble phenomenon, seem to have much in common with
situations with a large buhonergodicheat bath, it appears  quantum decoherence, to be discussed below, since both effects
natural to assume its validity also (and all the more)eigodic crucially depend on the difference of “forces” exerted on the
heat reservoirs, as long as multiphonon effects of bath degreesenvironment by different states of the subsystem. This state-
of freedon?®:61 (especially relevant for high-frequency solute ment is, however, to be understood with some calién,
oscillators) are not important. Note, however, that the transition due to our lack of classical analogues for quantum deco-
rates of eq 46 correspond to a special case only of the moreherence.

general rate expression eq 21, obtained as a quantum/classical The second component of dephasing, as noted by Rossky, is
approximation to the quantum rate formula eq 16 via Oxtoby’s of a genuinely quantum mechanical origin and is referred to as
correspondenc€(w) =~ Cqy(w) and quantum detailed balance quantum decoherence in the more narrow sense of the
(egs 17 and 20). Whether the more general quantum/classicaimeaning?®-28 It emerges as follows: Consider for simplicity a

hog2n+1) 2

which coincide with the quantum/classical transition rates
reported in eq 22, and we recover Oxtoby’s quantum preféctor

rate expression of eq 21 is also reproduced by ¥88 (with
dephasing) for a linearly dampeaiharmonicoscillator, where

two-state quantum subsystemwith basis state$00and |1[0)
initially in a superposition stat@V (1= ag|00+ a;|1[] which

the vibrationally adiabatic states cannot be obtained analytically, interacts with an environmeidt, initially in some statei L] So

can only be decided by numerical simulation.
Before we provide additional numerical evidence for quantum

the total system/>' is considered initially in a pure, uncorrelated
state (product statg0= |W i L] where the possibility of

detailed balance being (approximately) obeyed by our modified initial entanglement is neglected here. As the total system
surface hopping scheme, we discuss in more detail various €volves under the action of the Hamiltonian, its initial state will

origins of dephasing/decoherence as related to the validity of 9€nerally be turned into an entangled state, i.e., a superposition

our quantum/classical rate expression, eq 40.

3.2.4. Pure Dephasing and Energy Relaxation vs Quantum
Decoherence.Up to now, we have discussed the issue of

dephasing mainly from the perspective of a Redfield master

of product states

—iHth

(W= (ag/OH a,[10)li g0 — —{a, () 0Ok |a1“’°(t)al7m)
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where the conditional state vectol‘am”)(t)m correspond to  simulations of condensed phase vibrational energy transfer. The
close-coupling amplitudes (partial wave packets) of the environ- quantum/classical system-environment interaction is of some
ment, with their normsa((t)] al)(t)O= pu(t) equal to the ~ form V[a;Q(1)] (cf. egs 1 and 2), i.e., diagonal in the space of
probability of occurrence of the subsystem statél The states ~ G-eigenstates. Specifically, we have chosen the simple fagn
|00and |10may be the BoraOppenheimer ground and (firsty = — §X19Qi(t). Quantum decoherence is, therefore, expected
excited states of a large molecule or electronic impurity states to occur effectively in phase spa€ekeeping a balance between
in a liquid or solid, andaﬁ,‘{’)(t)D(m =0, 1) the partial nuclear localization in position- and momentum-space. If we insist to
wave packets associated with the (adiabatic or diabatic) work in a (diabatic or adiabatic) energy bagisi}, which
electronic states involved. The overlahg(t) = @(t)aYt)0  surface hopping methods obviously imply, the systdrath
for m= n need not equal zero. To the extent, however, that the interaction necessarily involves interstate (nondiagonal) cou-
forces on the environmental degrees of freedom depend on theplings Vim{0,Q(t)] (or respective kinetic couplings between
subsystem staten’]the overlapsin(t) will more or less quickly ~ adiabatic states), and maybe also significant diagonal texms
decay to zero. The subsystem reduced density matrix (in the[q,Q(t)] (em[Q(t)]). Whether quantum decoherence will occur
{ImJ-basis) is obtained as to an appreciable degree in the energy basis chosen, will be
determined by the state dependence of the diagonal terms and
. p(t)  Jpi(D) the relative strength of interstate coupling. In the present model
PO = Tr WOIF (O = (\]io(t) p(;%t) ) (48) situation, the system-environment interaction is exclusively
nondiagonal both in the diabatic (bare solute) vibrational energy
wherepmm(t) = pm(t) = Jnnl®) andpmr(t) = Junft). For ageneral  basis, Vi) = — amigQ(0), and in the vibrationally
HamiltonianH = [OMHS)0] + | 10H(P01| + Vit is easily seen,  adiabatic energy basiw&i™\(t) = — ihy,d0Qi(t) (egs 32-36).
that quantum decoherence in tr{an[] -basis, in order be  Quantum decoherence is, therefore, pred|cted to be rigorously

operative, requires that the environmental Hamiltorf#f, is absent in both energy bases (see below). We note, however,
sufficiently dependent on the subsystem statg) i.e., suf- that the significance of dephasing as related to energy/population
ficiently strong “diagonal” system-environment interaction. To relaxation is left untouched by this argument.
zeroth order in the interstate coupling = oV + Prezhdo and Rosskyf2have implemented the above ideas
110/4J0], the evolution of overlaps (cf. eq 47) is obtained in the domain of quantum/classical surface hopping dynamics
as starting from the semiclassical frozen Gaussian wave packet
(GWP) approach of Neria and Nitz&hWithin the limits of
JO1) = @) 2Lty second-order perturbation theory, a Golden Rule expression for
the quantum rate of a nonadiabatic transitior>n may be

D (49) obtained &%

exp[ hH(‘ n;} exp[ hH(‘ ’t}

Thus, as the overlaps of conditional environmental states wam —

|al)(t)Otend to zero, the subsystem reduced density operator m=n

becomes diagonal in thgimJ-basis (eq 48). If this occurs

rapidly enough, quantum decoherence significantly precedes .

population relaxation, sincg{(t) = JO(t) = |an? to zeroth where VI(t) = — ihdn{Q()]-Q(t) (in our notation) is the

order inV. On longer time scales, the balance between the quantum/classical nonadiabatic coupling between adiabatic states

creation of coherences (via the interstate coupling) and their (égs 3-5), written as a Hamiltonian term and evolved on the

decay (via quantum decoherence) leads to population (energy)initial adiabatic potential energy surfacg[Q(t)], and the

relaxation in the subsystem, which in turn defines an upper limit averagingZl..[3 is done over a classical initial distribution. The

for the time scale of dephasing (eq 19). Note, however, that we meaning of the overla@™)(t) is somewhat different from above,

have left open the precise nature of the (electronic) st@és yet closely related. It is defined as the overld@(t) =

and|10 They may correspond to adiabatic (Bet@ppenheimer) [GM(t)|GM(t)Oof two frozen GWP% evolving on statesn

or diabatic molecular energy states, with the interstate coupling andn

termV interpreted appropriately. The emergence of the deco-

herent or pointer basi%2” may then intuitively be anticipated ,

as the result of the interplay between the nondiagonal interstate IGM(t) = |_|||G|<m)(t) @XF{% ﬁdf Lm(T)}

coupling and the diagonal system-environment interaction. In

general, at least the initial state of the environment is not a 3

pure state, which introduces the requirement )of averaging Gm)(Q., Pit) = fexp{ [Q| Qfm)(t)]

over different pure state evolution¥ sl i ;00— | (Hood+

|alt)J10 of the total system, with appropriate statistical i om Am }

Wéig(h)tsvvi,,. In any case, )t/he underlyingprﬁec%anism of quan- h P' OIQ — Q™ Ol 1)

tum decoherence, and the associated loss of purity of the

subsystem (eqs 4819), operates at the level of individual . . . .

pure state evolutions of the total system (eq 47). For corn)posed ofa product of smgle-partlcle (§|hgle-DoF) Gaussians

quantum/classical pure dephasing, the individual member IG™ (1)} which are characterized by position and momentum

of the subsystem ensemble does not suffer a loss of parameter®™(t) and P{™(t), respectively, governed by clas-

purity. sical dynamics on thenth potential energy surface, and a fixed
At this point we may already draw some general conclusions real valued width parametey. The overall phase factor contains

on the nature of the decoherent basis in quantum/classicalthe classical Lagrangidny(t) = K(t) — en[Q(t)]. Consequently,

T VPOVE0) I (50)
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the complex valued overla§™(t) may be written as a product  notably determined by the nuclear overliffi).(t) (eq 52) of

of nuclear overlap and phase teff$* two frozen Gaussian wave functions evolving on the two
nonadiabatically coupled surfacegQ(t)] and e [Q(t)], respec-
IHE) = I0haft) Fraedt) tively.

Obviously, if the forces experienced by the classical degrees
chg)na r(t) = I—l BB,(m)|G|(”)(t)D of freedom strongly depend on the adiabatic state of the quantum
| subsystem, the nuclear overlap contained in the decoherence
function will decay quickly as the trajectori¢QM(t),PM(t)}
_ & ) ") 12 and {QM(t),PM(t)} diverge. This is typically the case for
o Il_l exn ~ Z[Ql O - Q701" - electronically nonadiabatic processes in large molecules and
L ) condensed phases. If, however, the forces exerted on the
m M2 b classical DoF happen to be almost insensitive to the adiabatic
—2[P|( (t) - Pl( O+ E[Ql( (t) - guantum state, the decoherence function will stay close to unity,
4ha DMI(t) = 1, and the quantum/semiclassical rate expression of
eq 55 practically converges to the quantum/classical limit eq
QPMIP™(® + P(t)] 53. The latter naturally includes quantum/classical pure dephas-
ing effects through its phase factor, as mentioned above. Since,
mn) ge i ot however, both quantum/classical pure dephasing and quantum
Jéha)sét) - exp{ "R odT [Ln(®) = Ln(f)]} decoherence effects crucially depend on topological differences
i between potential surfaces, they are closely related and therefore
= exy{ —Efodf [AK™(7) — AeMM(7) — not independent of one another.
When our nonadiabatic coupling&9(t) = — it dm{Q(t)]*
A r)]} (52) Q(t) of eqs 35-36 andAe"™(t) = Awmn = hwo(m — 1) (eq 32)
are substituted into the quantum/classical rate formula (eq 53),
with additional account of quantum/classical energy balance,
where AK(M(t) = KM(t) — K"(t) is the difference in kinetic ~ we immediately obtain our rate expression of eq 40 (assuming
energies between trajectories propagated omtlie andn th stationarity of the bath forcé(t) and its time derivative).
surfaces, respectively, ank™(t) = <™[Q(1)] — "[Q(1)]. Quantum/classical pure dephasing effects are rigorously absent
Note thate™[Q()] — €P[QM)] = AT(®) + A<™(t) has due to the fact that the bare adiabatic energy surfage3(t)]
been used, where the\eﬂ“”)(t) term has apparently been (eq 32_) all experience the same time-dependent vertical shift
omitted by Prezhdo and Ross®/. by ad|splgcen_nent of the classical degrees of freedom. Moreover,
With eq 52 plugged into the rate expression eq 50, a quantum/this also implies that the forces (eq 34) on the classical DoF
semiclassical approximation to the quantum Golden Rule rate due not depend on the adiabatic state of the quantum oscillator.

is obtained. Staib and Borgis, on the other hand, have obtainedThe decoherence function is theref®é™(t) = 1 rigorously.
the quantum/classical rate expreséfon Trajectories evolving on different adiabatic surfaces from the

same initial conditions due not diverge; thuy, () = 1
e i (eq 52), and als?AKM(t) = 0 and Ae!™(t) = 0 (eq 54).
Vv(rgf)»n:#f_w dt Vv exp{%j;dr AGm(T)}@ Thus, both quantum/classical pure dephasing and quantum/
(53) semiclassical decoherence effects in the adiabatic basis are
rigorously absent for our present model, as to be expected for
. ) . a perfectly harmonic system. The simultaneous absence of both
The difference between egs 50 and 53 is conveniently expresseqfiects should also not come as a surprise due to their close
ag? relationship.
_ As a result, the phase factdre!, contained in the quantum/
(Mmn) 1t (m (mn) classical rate expression eq 53, is the only factor out of the
IO eXF{hjE)dT Aem"(T)}D ® semiclassical expression for the overl#p)(t) (eqs 52 and 54)
- - it - - that survives. This ju_stifies _the neglect of gen_uine quantum
DY) = Joveriadt) exp{— ﬁj(;df [AKTP(7) — Aep (T)]} decoherence effects in the vibrationally adiabatic energy basis
(54) for the present model and the use of quantum/classical rate
expressions eqs 40 and 53. What remains to be considered is
dephasing due to energy relaxation, operating on a longer time
scale. This effect has been included in our “hopping with
complete dephasing” implementation of TFSH. As noted
W(n@n%' above, it takes into account the stochastic interruption of
o i coherent evolution by quantum transitions, repreparing the
lz f; dt H/rﬂﬁ)(t)vm(o) exp{lﬁ f;df Aeﬁﬁ“%(r)} D(mn)(t)ﬂ subsystem in a new quantum state, and ensures that the ensemble
h averaged transition rateg, ., are consistent with the occupied
(55) state m in the Markovian limit. The latter component of
decoherence/dephasing, which is always present in dissipative
In other words, the quantum/classical rate formula of eq 53 takessystems due to relaxation of energy level populations, but is
into account only part of the overlaf™(t), namely a quantum/  ysually neglected in quantum/classical simulations, has been
classical part of the phase teﬂﬁ;”sgt) (eq 52), while the rate  shown in previous subsections to be important for establishing
expression of eq 55 provides a quantum/semiclassical correctionquantum detailed balance in surface hopping simulations of
in terms of the decoherence functi@™(t) (eq 54), most vibrational energy relaxation.

in terms of the decoherence functidd™(t), such that
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3.2.5. Detailed Balance: Numerical Evidence and Theo- a 1.0 —+—F——F——F—+—T7T——"1T—"—1T—
retical Arguments. While the previous discussion served to 0ol
justify our “hopping with complete dephasing” implementation L
of TFS—TSH and the use of quantum/classical rate expressions, 0.8
egs 40 and 53, it is not a priori self-evident that the momentum £ g.7]
adjustment along the nonadiabatic coupling vector accompany- -
ing a successful hop and the associated existence of rejected® 0.6 [ ]

&
hops automatically guarantee quantum detailed balance. Here,» 0.5 | -

c
(=]
S
]

we provide additional (numerical) support for quantum detailed -g_ 04l ]
balance being (approximately) obeyed by our modified ¥FS & ! 4
SH scheme, and show how the statistics of frustrated hopping < 0.3 | .
is related to it, provided that additional requirements are met. E 0.2 [ o from time-instantaneous quantities ]
In surface hopping quantum/classical dynamics the detailed g - from time-integrated quantities 1
balance relatioMiy—n/Wn—m = €., (if applicable) for any 2 01 R — theory ]
pair of transitionsn—n andn—m (n > m) can only be achieved &« 0.0Lt—ut o 2 . 2 . 2 . 1 . 1 .
through the rejected hopping “cutoff’ (eq 42), operating o 2 4 6 8 10 12 14
exclusively on the upward transitiom(— n). During simula- time / ps
tions, the number of transition® — m = 1 (Nup, Naown) as b 1.0 ~ i : . . i . i
well as the number of rejected hopddiected has been counted L ]
at each time step, such tHafy(t) + Nrejeciedt) is the number of 09 1
m— m+ 1 transitions attempted. Consequently, the statistical 08} J
ratio pm+2/pm = N/(0 + 1) = e oo at thermal equilibrium c -
(provided that quantum detailed balance applies) should be.2
related to frustrated hopping statistics through §
(=
o
MNrejecredt) _ 1 P (56) g. 04l ]
|:I}‘lup(t)[l_l_ [Nrejecte((t)lj % [ )
£ 03} 4
where the fraction of rejected hops is a measure of that part of & 0.2 e from time-instantaneous quantities -
the classical phase space density which does not facilitateg 01l from time-Integrated quantities ]
upward transitionsn — m+ 1 in the quantum subsystem, due 3 T theory 1
to quantum/classical energy conservation restrictions. The same~ -0 6 * é ’ ,'4 * é * é * 1'0 * 1'2 * 1'4 ’
should also approximately hold true for the time-integrated .
quantitities /§, dtN(t) (. Figure 6b shows that this is the case time / ps

(for TFS—TSH with dephasing), where the ensemble averaged Figure 6. Frustrated hopping fractionMNejectedt)  MNup(t)J +
data have been additionally averaged over time windows of 200 MNejecied)lj computed from time-instantaneous and time-integrated

ot : ) : quantities, respectively (see text), as compared to the theoretical detailed
fs. The statistics derived fror,p(f)0and Mejecedt)is not balance prediction, + e #"»0 =~ 0.698, for a: the original, and b: our

Satis_factory, but _from the timefintegrated data we judge that modified TFS-TSH. Numerical data points with error bar serve to
detailed balance is only approximately obeyed. The theoretical ingicate the respective overall statistical uncertaintie$Q@6).

frustrated hopping fraction as derived from detailed balance is

1 — e Phwo ~ 0.698 forwg/2rc = 250 cnt and T = 300 K. the coherences and populations att,., arecausally connected
Working backward from the numerical data (time-integrated to (originate from) the pure adiabatic statel] the currently
quantities), we would obtaiter/27¢ =~ 2254+ 31 cnTl. This occupied state. Without dephasing, eq 37 must be replaced by
means that our above analysis of the approach to thermal . ) , .

equilibrium, based on the oscillator frequeney/2zc = 250 Prr(D) = — zftodt' g omlt=t) A Q) p(t) +

cm%, is not perfectly sound, but a reanalysis is skipped here K=m
because it gives only minor corrections. tdt’ g i@mt—t) ) d. O (57
Interestingly, without dephasing we observe (Figure 6a) that ;ﬁo Pmdl) A Qt) (57)

the fraction of rejected hops is typically larger, i.e5 & #iwer

> 1 — e fhoo, giving an effective oscillator frequeneyeq/27c with the integrals now runnning over the full time range of
=~ 272 4+ 39 cnTl Although, within the limits of numerical ~ simulations starting &b = 0, wherepnq(to) = Omyn @and pmr(to)
accuracy, the frustrated hopping fraction of Figure 6a seems to= 0, and all coherences and populations evolving from this
suggest that quantum detailed balance is approximately obeyednitial state up to timet have in principle to be taken into
also without dephasing, we have strong reasons to believeaccount. This makes it difficult to relate the Pauli rate coef-
(Figure 3a) that the oscillator relaxes to a quasi-classical ratherficients Wm—n = [m—n(t;0t)[10t (eq 11), obtained via surface
than a quantum statistical equilibrium. A resolution of this hopping probabilities of eq 7, to quantum/classical Golden Rule
apparent contradiction may be seen by inspection of the rate theory (egs 21, 22, 380, and 46). In particular, we have
quantum/classical rate expression eq 40 and its derivation, eqbserved (Figures 2a, 3a) that the original #5 scheme
37—40, from the TSH transition probabilities (eqs—3). implies comparatively large coherencas{t) = am(t)as(t) of
Equation 37 for the single-trajectory vibrational coherences the currently occupied vibrationally adiabatic staté) with
pmr(t), at short timeg > tyop after the preceding surface hop higher energy statas > m, and an undue bias toward upward
(thop = 0), can only be valid ifomn(thop) = O (or approximately transitionsm— m+ 1 on the single-trajectory level. Although
s0). For our “hopping with complete dephasing” modification the quantum/classical energy balance provides an overall
of TFS-SH this is the case. Specificallgan(thop) = Omn 1.€., “thermodynamic cutoff” for upward transitions, reflected by the
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frustrated hopping fraction (eq 56), the single-trajectory coher- [p,[}is a necessary arglfficientfeature of the original TFS
ences (eq 57) are not causally connected to dheently TSH scheme for obtaining quantum Boltzmann populations at
occupiedstate|mbut originate from theénitial adiabatic state long times in a general multilevel quantum subsystem. On this
Imol] It is therefore argued that quantum/classical energy part we disagree. As shown for our damped harmonic oscillator
conservation, as reflected by the frustrated hopping fraction for case (Figures 2a and 3a), the original /81 scheme entails
transitonsm — m + 1, is in general a necessary bubt relaxation of the excited quantum oscillator (in terms of occupied
sufficient condition for establishing detailed balance in the state populations), but not toward a quantum statistical equi-
quantum subsystem. A second requirement is the consistencylibrium. As implicit in the evolution of the mean adiabatic
of single-trajectory coherences and populations with the oc- occupation numbefi,dd (Figures 2a and 3a), quantum ampli-
cupied state indexn(t), such that the transition everits— n tudean(t) leaks out into statesy + 1, mp =+ 2, etc. successively
and n — k are causally connected to statééland |nl] accessible from thimitially occupied adiabatic stata,. No state
respectively. Again, this underscores the significance of intro- other thanmy = 5 may attain a quantum reference population
ducing, at the single-trajectory level, a mechanism of dephasing close to unitypni(t) = 1, at later times (not shown here, but cf.
as related to population relaxation, but leaves open the questionyef 34), just as a consequence of the unitary time-reversible
why the original TFS-SH scheme specifically seems to entail schralinger dynamics. Such an event of state vector recurrence
relaxation of the subsystem oscillator toward a quasi-classical g |We(t) = |Ws(0)= |mylis actually contained in the single-
thermal equilibrium. The latter issue surely deserves further trajectory sample of Figure 2= my = 5), with observable
consideration. ) ) consequences for the evolution of the occupied stitg(see
For the sake of comparison with the results of Parandekar below). Thus, the single-trajectory quantum amplitudes of the
and Tully* we note that the case of a quantum two-level system original TFS-SH generally cannot in any way be interpreted
{I0CI10 corresponds to a special situation, where eq 57 naturally 54 having evolved from an initial state other tHemC This is
reduces (exactly) to eq 37 in contrast to the special case of a two-level system, where the
Cor iongt—t) ) guantum amplitude merelgyclesbetweentwo states. For our
pro(t) = — ﬂodt' e Ty Q) poolt) — ppa(t)}  (58) modified TFS-TSH scheme (Figures 2b, 3b), theie a
discrepancy between the expectation valiigdy and the
leading to TFS-TSH Golden Rule rate coefficients (cf. eq 40) occupied state indem(t) (omn(t) andpm(t)) and their ensemble
. averaged values, but it is ketinimal During unitary quantum
= BRE{ A Q1) LD} evolution between surface hops amplitude spreads into neigh-
m—n

PrnlD) 4 boring states of thecurrently occupied adiabatic staten,

prepared in the preceding hop through our “hopping with
~ fj “dre " -O(r) o, - Q). (59) complete dephasing”. No adiabatic state other thafstate

® vector revival) may acquire a quantum reference population
close to unity. The range of states with significant quantum
amplitude is usually dominated by the currently occupied state
and includes those states which diectly accessible from the
latter (@ = m £ 1 via matrix elementsyy). In contrast, when

with m = 1 (0) andn = 0 (1), and the subscriph— n as a
reminder for observing quantum/classical energy conservation
constraints. Although the coherences at titragiginate from
Impat t = to, and not from/mOJat t = thep quantum detailed X - .
balance may still be maintained, as argued shortly below, sinceUSiNd the original TESSH scheme the currently occupied state
the single-trajectory quantum reference populatippgt) = and its neighbors may bg_contamed in the small-gmpllt_ude tail
la,(t)[2, not the occupied state populatiomg(t) = Onmy, of the quantum superposmqws(t)t!: ann(t)mml_n this typical _
(rapidly) cyclebetween states= 0, 1. An important similarity rather than exceptlo.nal case, QUrlng single-trajectory evolution
of our present model of vibrational energy relaxation and the the occupied state index(t) will consequently be forced to
two-state model of Parandekar and Téljs the constancy in ev_olve towa_rd the Iarge-amplltude center of the superposition.
time of the nonadiabatic coupling vector (cf. eq 35). In both With [molbeing an energetically excited state, the center of the
cases the quantum subsystem is continuously driven by anduantum superposition evolves toward higher energy states
external (generalized) force. The essential difference between(fadd = mo), while the occupied state index is more likely to
the above two-state model and our present model situation is€volve toward lower energy states (quantum/classical energy
the latter's multilevel feature. As observed by Parandekar and balance), placing the currently occupied stag) in the lower
Tully,! the ensemble averaged squared quantum amplitudes€nergy tail off W(t)[] State vector revivals, full or partial, offer
reflect a uniform distribution,Jao|20 = Jayf20= 0.5, at an observable signature of the occupied state being pushed back
asymptotic equilibrium, while the asymptotic ensemble averaged toward the (higher energy) center of the quantum superposition
occupied state populations are in accord with a quantum (undue bias toward upward transitions), if permitted by the
statistical equilibrium (quantum detailed balance) at specified €nergy conservation constraint. Such signatures are clearly
finite bath temperaturelp,dpo= e #hvwn, The authors note  Visible in Figure 2a, including a full recurrence and at least two
that the discrepancy between (single-trajectory or ensemblepartial (attempted) ones. We believe that this phenomenon is
averaged) quantum reference and occupied state populationsat the heart of our observation that the original FASH
pnn(t) and py(t), respectively is an essential requirement (or scheme fails to reproduce quantum detailed balance even
consequence) of TFSSH, because quantum detailed balance approximately for our present model, as an example of a general
is achieved through the appearance of frustrated hops (bymultilevel quantum subsystem. Again, a two-level system
imposing quantum/classical energy balance). Without frustrated contains by definition only two states which adirectly
hopping, [pn(t)O= [ona(t)0] and the quantum two-level system accessible from each other, one of which may be the currently
would approach infinite temperature. On this part, we fully occupied one. It appears practically unimportant, from which
agree. of the two possible initial statesy = 0 or 1, the current single-
Moreover, Parandekar and Tully (seem to) claim that trajectory coherences and populations have evolved. Both states
frustrated hopping, leading to the discrepancy betwgghand may attain a quantum reference populatigqt) = 1. In fact,



3212 J. Phys. Chem. A, Vol. 110, No. 9, 2006 Kab

the quantum amplitudes at tirhenay equally well have emerged can be motivated by a variety of related arguments, applying
from either initial state, just as a result of time-reversal to dissipative subsystems as a result of their coupling to a large,
symmetry. Tully’s original and our modified TFSTSH scheme effectively thermal environment. First, simple considerations

are therefore expected to give the same results; i.e., the “hoppingoased on a Redfield master equation in the secular limit show
with complete dephasing” modification appears unnecessary,that the rateswn-, of local population relaxation define a

in the case of a quantum two-state system. minimum rate of dephasing. Second, in a more microscropic

In summary, the above arguments are just another variant ofdescription, the rates of escape events- n from the currently
our theme saying that, in addition to observing the quantum/ occupied adiabatic staten"should, after some short transient
classical energy balance during hopping, siregle-trajectory ~ period following the preceding hog & thop), become inde-
quantum reference stat@Ps(t)dshould be consistent with ~ pendent of the previous history £ tnop) Of the stochastically
(causally connected to) the currently occupied stafg, to evolving occupied staten(t), and of the underlying single-
obtain meaningful TFSSH rate coefficients and reproduce trajectory adiabatic conerences and populations, determining the
quantum detailed balance in a general multilevel quantum hopping statistics for times up tg,, (emergence of Markovian
subsystem. subdynamics). Third, the property of quantum detailed balance,

To complete our discussion of Parandekar and Tully's wbrk, Win—n/Wn—m = €7/... for any pair of statesn andn, requires
we just add two remarks related to tignamicsof approach  that the surface hopping rate coefficiemtg.n = Pm-n(t;00)10
to a quantum thermal equilibrium. First, the authors conclude Ot @dWn—m are sampled under conditions, that the composite
that the attainment of a quantum statistical equilibrium depends Guantum/classical system may be considered as prepared in
(crucially?) on the fact that their quantum two-state variables State$ss(Q,P) = [mia™(Q,P)i| and|n(3"(Q,P)|, respec-
X = a2 =1 — a2 and Y = acal + a2, are statistically tively, §hortly after (or, approxmately, immediately at)_ .the
separable from the classical momentum (of the chain atom preceding hokp, where the classical phase space denS|t.|es are
directly coupled to the quantum subsystem in their model), i.e., P*(Q.P) = P(e%(QlP_)- For a quantum system immersed in a
classical momentum and quantum amplitudes are uncorrelated!arge heat reservoir (even a nonergodic one), individual non-
In light of Golden Rule rate theory (egs 58 and 59), it appears equilibrium classical enwronmeptal trajectorlgs generated by the
to us that this may not be quite right. In fact, eq 58 (eq 37) TFS—SH scheme may for practical purposes indeed be regarded
shows that (single-trajectory) coherences and bath momenta ar@s members of a classical thermal ensemidl{Q,P), pos-
dynamically correlated, such that the coherences can besibly depending on the occupied state of the quantum
eliminated from the equations of motion, when focusing on the subsystem. Resetting the coherently evolving quantum state
population dynamics within second-order perturbation theory vector during hopping, as suggested, then naturally meets, upon
for the subsystem density operator. On the ensemble level, theensemble averaging, the above physical requirements. The
coherences may be considered irrelevant (in the sense of coarseaverall picture of TFS SH thus suggested is one where both
graining as implied by a Pauli master equation), but still the gquantum and classical subsystems are affected in a discontinuous
statistics of coherences should be related to the statisticalmanner (apparent “collapse” and momentum adjustment, re-
properties of bath momenta. Second, as a corollary, from the spectively) during hopping.
TFS—SH transition/hopping probabilities (eqs-3; cf. eq 59) Our “hopping with complete dephasing” version of TFS
being proportional to quantum coherences and classical mo-TSH, which was shown to (approximately) fulfill quantum
menta (projected onto the nonadiabatic coupling vector) it detailed balance, might be considered a too drastic modification
follows by way of eq 58 that, within Golden Rule rate theory, of Tully’s original scheme. Indeed, the latter has proven a very
the hopping rate coefficients,—, are related to (the Fourier  useful tool especially for modeling electronically nonadiabatic
transform of) ecorrelation functiorof projected bath momenta  processes and proton/hydrogen transfer. Keeping at least some
(eq 59; see also egs 50, 53, and 55). Thus, the hopping ratedegree of coherence across hopping events may, for instance,
coefficient (eq 59) contains the dynamical correlation between be necessary for a better description of possible interference
quantum coherences and classical bath momenta in terms of affects in the case of successive avoided crossings. On the other
(projected) momentum correlation function. Altogether, the hand, the necessity of including decoherence effects has been
above comments on Parandekar and Tully’s important work are stressed by quite a number of research grébps3239and the
not meant as harsh criticism (or hair-splitting), but rather as a general notion of quantum decoherence in open system dynam-

compleme_r_ltary rate th_eoretical view on the FHSSH met_h_od_ ics has by now become widely accepted, even though still
and its ability to describe the approach to thermal equilibrium subject to debat® In any case, the physical nature of quantum
of an intrinsically multilevel quantum subsystem. coherences produced by classical external time-dependent fields

3.3. DiscussionWe have investigated the statistical mechan- is different from those generated by quantum system-environ-
ical properties of Tully's fewest switches surface hopping mentinteraction&® Quantum systembath correlations arising
method for the model of a linearly damped harmonic oscillator. from diagonal (in the{|n-space) interactions provide a
In its original version, TFSSH was shown to fail in producing ~ mechanism for locablecay of coherence in a subsysté.
an asymptotic quantum statistical thermal mixture of vibra- Classical external driving fields, even if subject to quantum/
tionally adiabatic states. Instead, a quasi-classical asymptoticclassical backreaction, generally tend to spread coherence, and
thermal distribution is observed. While the numerical frustrated thus population, (almost) uniformly across the quantum state
hopping statistics seems to be in accord with quantum detailedspace**In particular, for vibrationally nonadiabatic transitions
balance, the origin of the above failure is traced back to the we have observed that, when hopping takes place to lower
single-trajectory quantum amplitudes evolving coherently from energy states during a single surface hopping trajectory,
the initial adiabatic stat@mpJat timety, = O, rather than from coherences involving higher energy states are maintained,
the currently occupied staten] prepared in the preceding hop leading as argued to the above failure of Tully’s original SH
at time thop As a remedy, we have suggested resetting the scheme. Ensemble averaging cannot generally be expected to
coherently evolving state vector to the new adiabatic state, provide a remedy to this unphysical situation, except maybe
[V (thop) O [xn[Q(1)]C) during hoppingih— n). This procedure  for special cases. Without ad hoc inclusion of decoherence/
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dephasing effects there is no way to arrive at a rigorous quantumreproduces quantum detailed balance, and (ii) gives Oxtoby’s
statistical mixture for the ensemble averaged subsystem densityquantum prefactor (or correction factor}® for the overall
operator. average rate of energy relaxation. While the first property has

To place the suggested modification of TFESH in aclear ~ recently been obtained by Parandekar and Tuligr a two-
general context, we have tried to identify, in a fairly detailed level quantum system coupled to the first atom of a linear chain,
discussion, various mechanisms of decoherence/dephasing athe second property has, to the best of our knowledge, not been
relevant to quantum/classical dynamics simulations. While recognized before. It implies that fewest switches SH is, at least
quantum/classical pure dephasing is naturally included in for the case of dominantly linear dissipation, not superior to
QCMD methods, genuine quantum decoherence can onlythe quantum/classical Pauli master equation approach to VER
approximately be taken into account via quantum/semiclassicalmentioned above, while being computationally much more
corrections. Both are related to topological differences betweendemanding. In particular, it seems to reproduce one specific
potential energy surfaces[Q(t)] ande [Q(1)], i.e., sufficiently quantum prefactor (for the bath force correlation spectrum) out
strong diagonal system-environment interaction, and are rigor- of a variety of possibilitie$® 72 For our present model and
ously absent in the vibrationally adiabatic basis for the present parameter situation, the prefactdrw,,T) for the overall average
model situation of a linearly damped harmonic oscillator. rate of relaxation, defined through the relatiog, = f (wo,T)-

In contrast, dephasing as related to energy/population relax-Wei. takes the values 0.895, 1.061, and 1.030 when using the
ation is physically distinct from the latter dephasing mechanisms Standard (Oxtoby), Schofield, and harmonic/Schofield correc-
in that it originates from nondiagonal (systetbath) interac-  ions, respectively (cf. ref 72), while the harmonic prefactor is
tions, which drive the energy dissipation. It is therefore present {rivially f (wo,T) = 1. With our modified TFS SH scheme, the
in all dissipative systems and determines the loss of phaseoPserved average rate of relaxatisig is definitely smaller than
coherence at long times. The “hopping with complete dephas-Wer = 0.2 ps™ (zqc > 7a) and is very well reproduced by the
ing” version of TFS-SH, suggested here for reasons of Standard correctiorf,(wo,T) = 0.895.
consistency, corresponds to an extreme version of introducing A weakness of our present study is our inability to arrive, in
dephasing due to population relaxation, where the mean timean analytically rigorous way, at the quantum/classical rate
length of adiabatic coherence is given by the average time expressions reproduced numerically. Rather, we arrived at these
between nonadiabatic transitions, and coherence is not main-rate expressions in a semianalytical, partially heuristic manner,
tained across hopping between potential surfaces. It essentiallysofar limited to the linearly dampeldarmonicoscillator. We
restricts TFS-SH to the limit of incoherent hopping between believe that this is an important issue for further investigation.
adiabatic states, where the quantum state vector becomes #s stated by Berne and co-workéfs;it remains an open
purely auxiliary quantity for sampling the rate coefficients of a question, whether those mixed quantum-classical treatments”
Markovian Pauli master equation during coherent evolution (including TFS-SH) “agree with our mixed quantum-classical
between hopping events. From the algorithmic point of view, results” (the Oxtoby prefactor) “in the regime where lowest order
it is regarded as a minimal extension of Tully’s fewest switches perturbation theory is valid”. Importantly, our combined nu-
SH, which is expected to reproduce the emergence of Markovianmerical and analytical study suggests that the validity of
subdynamics and quantum detailed balance, provided thatquantum detailed balance (with Oxtoby’s prefactor) for #FS
sources of decoherence/dephasing other than population relaxTSH in the second-order perturbative regime requires, in
ation may be neglected. In special cases, as, e.g., for quantunaddition to frustrated hopping, the inclusion of some kind of
two-state systents,it may not even be needed. For the linearly state vector “collapse” during single-trajectory hopping. In
dampedanharmonicoscillator, both quantum/classical pure general, it is expected that the TFSH transition rates not only
dephasing and quantum decoherence effects, though possiblydepend on whether decoherence/dephasing is introduced but also
weak, are also expected to be relevant. depend on which relevant sources of dephasing are taken into

Condensed phase vibrational energy relaxation (VER), for account. In this sense, the above gquestion is still open, e.g., for
which we have considered a simple model here, has only the linearly damped buinharmonicoscillator.
recently become the subject of investigation using quantum/  As to the issue of quantum decohereft#,we stress once
classical dynamics methodologfy,18:33:34.6769 the exception more that our “hopping with complete dephasing” extension of
being the quantum/classical Pauli master equation approachTFS-TSH is not meant to imply that the adiabatic working
using classical equilibrium force correlation functi®h® (see basis of the SH scheme be regarded as a pointer basis (in the
also references in ref 34). The latter has a long history in the sense that it dynamically minimizes the coherences via system
field of vibrational energy transfer, but differs from the quantum/ path entanglement), since the underlying mechanism invoked
classical dynamics methods discussed Kér@uantum and  is distinct from genuine quantum decoherence. While for
classical equations of motion are not solved simultaneously. electronically nonadiabatic transitions the diabatic/adiabatic
Instead, classical dynamics is used first to generate the equi-alternativéS provides relevant candidates for the pointer basis,
librium fluctuation forces, from which (approximate) quantum for quantum nuclear or vibrational (harmonic or anharmonic)
transition rates are computed later on. Thus, the applicability motion coherent states (minimum-uncertainty wave packets) are
of surface hopping or mean field quantum/classical dynamics expected to play the role of pointer statés’® Interestingly,
methods to vibrational energy relaxation, and especially their coherent states of the quantum harmonic oscillator represent
relation to the more traditional approaches, appear as yet largelythe only type of quantum initial states for which the mean field
unexploreck® Vibrational energy relaxation differs from the  Enrenfest method, for (dominantly) linear damping, gives
electronically nonadiabatic case in that, for a single vibrational physically reasonable resuft34 From a pragmatic point of
DoF (“diatomic” VER), avoided level crossings do not appear, view, if only the populations of the subsystem density matrix
and the nonadiabatic coupling region is typically delocalized in a certain basis are considered relevant, it seems sufficient to
in the phase space of the classical degrees of freedom. identify for the working basis chosen the most important source-

Our main results are that TFSSH, with appropriate (s) of dephasing. For vibrational energy transfer in polyatomic
inclusion of dephasing, for the linearly damped oscillator (i) molecules intra- and intermolecular energy transfer pathways
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(and combinations thereof) come into play, and level degenera-propagated along individual quantum/classical trajectories then
cies and avoided crossings due to intramolecular Fermi reso-becomes a purely auxiliary quantity. Coherences sampled along
nances are expected. In such systems, the treatment of decotrajectory segments merely provide information about transition
herence/dephasing may be crucial, and the present “hoppingprobabilities, but are discarded when hopping to a new adiabatic

with complete dephasing” scheme seems incomplete. surface.
Combining both coherent and incoherent dynamical aspects
4. Conclusion together with quantum detailed balance in one universally

applicable (basis-independent) quantum/classical method seems

Tully’s fewest switches surface hopping (T+SH) method hard to achieve
| .
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